Пропустить навигацию.
Главная

Газогенератор

Газогенератор – решение для экономных!

В современном мире необходимость удешевления электроэнергии является одной из наиболее насущных проблем, поэтому многие желают получать электричество для своих нужд, используя привычное и доступное сырье. В наших условиях таким сырьем, которое хотелось бы применять для двигателей внутреннего сгорания, являются обрезки веток, дрова, торф, брикеты опилок. И это возможно! Современные газогенераторы на твердом топливе могут работать на всем вышеперечисленном. При этом, стоимость электроэнергии, которую дают газогенераторы на древесных отходах, будет составлять лишь количество затрат на покупку и обслуживание электростанции! Именно фактор простоты получения сырья делает «газогенератор на дровах» куда более экономичным, чем его собрат дизель генератор.

Древесные газогенераторы применялись еще в СССР.

Подобные газогенераторы были разработаны на основе передовых достижений науки и техники еще в Советском Союзе. Перед учеными была буквально поставлена задача, изобрести и внедрить в производство газогенератор на опилках или древесный газогенератор, который бы смог заменить дизельные генераторы и бензогенераторы в районах, где нет собственных запасов жидкого топлива. И вопрос был успешно решен – появились газогенераторы промышленные, способные обеспечивать работу предприятий, и газогенераторы бытовые, используемые простым населением для получения электроэнергии.

Но время идет. Непредсказуемые колебания на нефтяном рынке делают дизельные электростанции убыточными, а домашние бензиновые генераторы слишком прожорливыми. И снова приходится искать топливо, на котором может работать газогенератор: опилки, дрова… В результате именно сегодня электрогенераторы на основе твердого топлива переживают второе рождение. Современная наука ушла далеко вперед и создала генераторные установки, которые значительно превосходят по эффективности советские аналоги.

Современный газогенератор может заменить инверторный бензогенератор.

Сейчас разработан газогенератор, способный решать самые разнообразные задачи: беспрерывное обеспечение электроэнергией промышленных объектов, электроснабжение коттеджа или частного дома, существует даже газогенератор в прицепе, применяемый в грузовых автомобилях. Это может быть газогенератор на угле, водородный газогенератор, или когенераторная установка, важно то, что с помощью любого из этих приборов можно существенно сэкономить свои средства.

Если дизельгенератор работает на жидком топливе, то газовые генераторы предназначены для получения горючего газа (смесь СО, Н и др.) из твердого топлива влажностью до 40% (торф, уголь, дрова, сельхоз. и прочие отходы, способные гореть, окисляясь кислородом воздуха). Газовые электрогенераторы обеспечивают работу самых разных двигателей внутреннего сгорания: карбюраторных, инжекторных, дизельных. Наша компания предлагает газо генераторы и современные газовые электростанции собственной разработки и производства, что заметно повышает надежность выпускаемой продукции и снижает ее стоимость по сравнению с зарубежными образцами.

Экология и экономия – это тоже газогенераторы.

В наше время нельзя забывать и об экологических параметрах. Хорошо известно, что бензиновые электростанции и традиционные бензиновые генераторы не отличаются отсутствием вредных выбросов в атмосферу. А даже самый простой автомобильный газогенератор по сравнению со своим бензиновым коллегой сравнительно менее вреден по отношению к окружающей среде, так как октановое генераторного газа равно 110-140, что заметно выше, чем у жидкого топлива. Полезен генераторный газ и для двигателей – он продлевает их моторесурс. Таким образом, газовые электростанции и двигатели совмещают в себе два положительных момента – менее вредны для природы и дольше работают.

Нельзя не упомянуть более конкретно и об экономии, когда используется газогенератор, газовые электростанции. В этом случае стоимость 1 кВт/час электроэнергии составляет 1,2 - 5 центов в зависимости от мощности и эффективности электростанции. Нетрудно подсчитать, сколько средств способен сэкономить такой стационарный газогенератор своему владельцу. Ещё более эффективно использовать древесный или водородный газогенератор для обеспечения топливом автомобиля, т.к. количество генерируемого топлива, эквивалентного 1 л бензина, будет стоить 4-12 центов в зависимости от стоимости сырья.

Доступные газогенераторы и газовые станции – это выгодное решение.

Если Вас интересует вопрос экономии, рекомендуем купить газогенератор, не откладывая это дело в долгий ящик, так как пока Вы используете бензиновые электрогенераторы или даже более дешевые дизельные электрогенераторы, деньги в буквальном смысле вылетают в выхлопную трубу. Современные и проверенные газовые станции, предлагаемые нашей компанией, способны полноценно заменить дизельэлектростанции на Вашем производстве. Не нужно искать объявления «продам газогенератор», вся подобная продукция представлена в нашем ассортименте.

Твердо решив для себя «куплю газогенератор», обязательно ознакомьтесь с условиями поставки и ценами в соответствующем разделе нашего сайта, там Вы сможете найти наиболее приемлемый вариант. Это может быть вихревой газогенератор или любая другая модель, важно то, что любой газогенератор, продажа которого осуществляется на нашем сайте, уже отлично зарекомендовал себя в реальных условиях работы и является выгодной и надежной техникой.

Газогенератор, аппарат для термической переработки твёрдых и жидких топлив в горючие газы, осуществляемой в присутствии воздуха, свободного или связанного кислорода (водяных паров). Получаемые в Г. газы называются генераторными. Горение твёрдого топлива в Г. в отличие от любой топки осуществляется в большом слое и характеризуется поступлением количества воздуха, недостаточного для полного сжигания топлива (например, при работе на паровоздушном дутье в Г. подаётся 33—35% воздуха от теоретически необходимого). Образующиеся в Г. газы содержат продукты полного горения топлива (углекислый газ, вода) и продукты их восстановления, неполного горения и пирогенетического разложения топлива (угарный газ, водород, метан, углерод). В генераторные газы переходит также азот воздуха. Процесс, происходящий в Г., называется газификацией топлива.

Г. обычно представляет собой шахту, внутренние стенки которой выложены огнеупорным материалом. Сверху этой шахты загружается топливо, а снизу подаётся дутьё. Слой топлива поддерживается колосниковой решёткой. Процессы образования газов в слое топлива Г. показаны на рис. 1. Подаваемое в Г. дутьё вначале проходит через зону золы и шлака 0, где оно немного подогревается, а далее поступает в раскалённый слой топлива (окислительная зона, или зона горения 1), где кислород дутья вступает в реакцию с горючими элементами топлива. Образовавшиеся продукты горения, поднимаясь вверх по Г. и встречаясь с раскалённым топливом (зона газификации II), восстанавливаются до окиси углерода и водорода. При дальнейшем движении вверх сильно нагретых продуктов восстановления происходит термическое разложение топлива (зона разложения топлива III) и продукты восстановления обогащаются продуктами разложения (газами, смоляными и водяными парами). В результате разложения топлива образуются вначале полукокс, а затем и кокс, на поверхности которых при их опускании вниз происходит восстановление продуктов горения (зона II). При опускании ещё ниже происходит горение кокса (зона 1). В верхней части Г. происходит сушка топлива теплом поднимающихся газов и паров.

В зависимости от того, в каком виде подаётся в Г. кислород дутья, состав генераторных газов изменяется. При подаче в Г. одного воздушного дутья получается воздушный газ, теплота горения которого в зависимости от перерабатываемого топлива колеблется от 3,8 до 4,5 Мдж/м3 (900—1080 ккал/м3). Применяя дутьё, обогащенное кислородом, получают т. н. парокислородный газ (содержащий меньшее количество азота, чем воздушный газ), теплота горения которого может быть доведена до 5—8,8 Мдж {м3 (1200—2100 ккал/м3).

При работе Г. на воздухе с умеренной добавкой к нему водяных паров получается смешанный газ, теплота сгорания которого (в зависимости от исходного топлива) колеблется от 5 до 6,7 Мдж/м3 (1200—1600 ккал/м3). И, наконец, при подаче в раскалённый слой топлива Г. водяного пара получают водяной газ с теплотой сгорания от 10 до 13,4 Мдж/м3 (2400—3200 ккал/м3.

Несмотря на то, что идея Г. была выдвинута в конце 30-х гг. 19 в. в Германии (Бишофом в 1839 и Эбельманом в 1840), их промышленное применение началось после того, как Ф. Сименсом (1861) был предложен регенеративный принцип отопления заводских печей, позволивший эффективно применять генераторный газ. Изобретателями первого промышленного Г. были братья Ф. и В. Сименс. Их конструкция Г. получила повсеместное распространение и просуществовала в течение 40—50 лет. Только в начале 20 в. появились более совершенные конструкции.

В зависимости от вида перерабатываемого твёрдого топлива различают типы Г.: для тощего топлива — с незначительным выходом летучих веществ (кокс, антрацит, тощие угли), для битуминозного топлива — со значительным выходом летучих веществ (газовые и бурые угли), для древесного и торфяного топлива и для отбросов минерального топлива (коксовая и угольная мелочь, остатки обогатительных производств). Различают Г. с жидким и твёрдым шлакоудалением. Битуминозные топлива обычно газифицируются в Г. с вращающимся водяным поддоном, а древесина и торф — в Г. большого внутреннего объёма, т. к. перерабатываемое топливо имеет незначительную плотность. Мелкое топливо перерабатывается в Г. высокого давления и во взвешенном или кипящем слое.

По назначению Г. можно разделить на стационарные и транспортные, а по месту подвода воздуха и отбора газа на Г. прямого, обращенного и горизонтального процесса. В Г. прямого процесса (рис. 2) движение носителя кислорода и образующихся газов происходит снизу вверх. В Г. с обращенным процессом (рис. 3) носитель кислорода и образующийся газ движутся сверху вниз. Для обеспечения обращенного потока средняя часть таких Г. снабжается фурмами, через которые вводится дутьё. Так как отсасывание образовавшихся газов осуществляется снизу Г., то зона горения 1 (окислительная) находится сразу же под фурмами, ниже этой зоны следует зона восстановления II, над зоной горения 1 располагается зона III — пирогенетического разложения топлива, происходящего за счёт тепла раскалённого горящего кокса зоны 1. Сушка самого верхнего слоя топлива в Г. происходит за счёт передачи тепла от зоны III. В Г. с горизонтальным процессом носитель кислорода и образующийся газ движутся в горизонтальном направлении.

При эксплуатации Г. соблюдается режим давления и температуры, величина которых зависит от перерабатываемого топлива, назначения процесса газификации и конструкции Г.