Краткий курс алгебры за 7 класс
Краткий курс алгебры за 7 класс
Два уравнения называют равносильными, если они имеют одно и тоже множество корней.
Свойства уравнений
- Если к обеим частям данного уравнения прибавить (или из обеих частей вычесть) одно и то же число, то получим уравнение, равносильное данному.
- Если какое-либо слагаемое перенести из одной части уравнения в другую, изменив при этом его знак на противоположный, то получим уравнение, равносильное данному.
- Если обе части уравнения умножить (разделить) на одно и то же отличное от нуля число, то получим уравнение, равносильное данному
Линейное уравнение
Уравнение вида , где
— переменная,
и
некоторые числа, называют линейным уравнением с одной переменной.
Одночлены и многочлены
Одночлены
- Выражения, являющиеся произведениями чисел, переменных и их степеней, называют одночленами.
- Одночлен, содержащий только один отличный от нуля числовой множитель, стоящий на первом месте, а все остальные множители которого — степени с разными основаниями, называют одночленом стандартного вида. К одночленам стандартного вида также относят числа, отличные от нуля, переменные и их степени.
- Числовой множитель одночлена, записанного в стандартном виде, называют коэффициентом одночлена.
- Одночлены, имеющие одинаковые буквенные части, называют подобными. Степенью одночлена называют сумму показателей степеней всех переменных, входящих в него. Степень одночлена, являющегося числом, отличным от нуля, считают равной нулю.
- Нуль-одночлен степени не имеет.
Многочлены
- Выражение, являющееся суммой нескольких одночленов, называют многочленом.
- Одночлены, из которых состоит многочлен, называют членами многочлена.
- Одночлен является частным случаем многочлена. Считают, что такой многочлен состоит из одного члена.
Умножение одночлена на многочлен
Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.
Умножение многочлена на многочлен
Чтобы умножить многочлен на многочлен, можно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.
Формулы сокращенного умножения
Разность квадратов двух выражений
Разность квадратов двух выражений равна произведению разности этих выражений и их суммы:
Произведение разности и суммы двух выражений
Произведение разности двух выражений и их суммы равно разности квадратов этих выражений:
Квадрат суммы и квадрат разности двух выражений
Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого и второго выражений, плюс квадрат второго выражения:
Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого и второго выражений пл юс квадрат второго выражении:
Преобразование многочлена в квадрат суммы или разности двух выражений
позволяют «свернуть» трёхчлен в квадрат двучлена.
Трёхчлен, который можно представить в виде квадрата двучлена, н а зывают полным квадратом.
Сумма и разность кубов двух выражений
Многочлен называют неполным квадратом разности.
Сумма кубов двух выражений равна произведению суммы этих выр а жений и неполного квадрата их разности:
Многочлен называют неполным квадратом суммы.
Разность кубов двух выражений равна произведению разности этих выражений и неполного квадрата их суммы:
Степень. Свойства степени с целым показателем
Свойства степени с целым показателем
Для любого и любых целых
выполняются равенства:
Для любых ,
и любого целого
выполняются равенства:
Функция. Область определения и область значений функции
Функция
Правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной, называют функцией, а соответствующую зависимость одной п e ременной от другой — функциональной.
Обычно независимую переменную обозначают , зависимую обозначают
, функцию(правило) –
.
Независимую переменную называют аргументом функции. Значение зависимой переменной
называют значением функции.
Тогда функциональную зависимость обозначают .
Значения, которые принимает аргумент, образуют область определения функции. Все значения, которые принимает зависимая переменная, образуют область значений функции.
Способы задания функции
Описательный, табличный, с помощью формулы, графический.
График функции
Графиком функции называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты — соответствующим значениям функции.
Линейная функция, её график и свойства
- Функцию, которую можно задать формулой вида
, где
и
— некоторые числа,
— независимая переменная, называют линейной.
- Графиком линейной функции является прямая.
- Линейную функцию, заданную формулой
, где
, называют прямой пропорциональностью.
Системы линейных уравнений с двумя переменными
Уравнение с двумя переменными
Пару значений переменных, обращающую уравнение с двумя переменными в верное равенство, называют решением уравнения с двумя переменными.
Решить уравнение с двумя переменными – значит найти все его решения или показать, что оно не имеет решений.
Графиком уравнения с двумя переменными называют геометрическую фигуру, состоящую из всех тех и только тех точек координатной плоскости, координаты которых (пары чисел) являются решениями данного уравнения.
Если некоторая фигура является графиком уравнения, то выполняются два условия:
- все решения уравнения являются координатами точек, принадлежащих графику;
- координаты любой точки, принадлежащей графику, — это пара чисел, являющаяся решением данного уравнения.
Графический метод решения системы двух линейных уравнений с двумя переменными
Графический метод решения системы уравнений заключается в следующем:
- построить в одной координатной плоскости графики уравнений, входящих в систему;
- найти координаты всех точек пересечения построенных графиков;
- полученные пары чисел и будут искомыми решениями.
Если графиками уравнений, входящих в систему линейных уравнении, являются прямые, то количество решений этой системы зависит от взаимного расположения двух прямых на плоскости:
- если прямые пересекаются, то система имеет единственное решение.
- если прямые совпадают, то система имеет бесконечно много решении.
- если прямые параллельны, то система решений не имеет.
Решение системы двух линейных уравнений с двумя переменными методом подстановки
Чтобы решить систему линейных уравнений методом подстановки, следует:
- выразить из любого уравнения системы одну переменную через другую;
- подставить в уравнение системы вместо этой переменной выражение, полученное на первом шаге;
- решить уравнение с одной переменной, полученное на втором шаге;
- подставить найденное значение переменной в выражение, полученное на первом шаге;
- вычислить значение второй переменной;
- записать ответ.
Решение систем линейных уравнений методом сложения
Чтобы решить систему линейных уравнений методом сложения, следует:
- подобрать такие множители для уравнений, чтобы после преобразований коэффициенты при одной из переменной стали противоположными числами
- сложить почленно левые и правые части уравнений, полученных на первом шаге
- решить уравнение с одной переменной, полученной на втором шаге
- подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы;
- вычислить значение второй переменной;
- записать ответ.
Правила по алгебре 7 класс
При пользовании «Инфоуроком» вам не нужно платить за интернет!
Минкомсвязь РФ: «Инфоурок» включен в перечень социально значимых ресурсов .
Выражение с переменными
— это выражение, состоящее из чисел.
— это выражение, состоящее из чисел и переменных (букв)
Уравнение вида где переменная, некоторые числа, называют линейным уравнением с одной переменной.
Математическая модель – составленное по данному условию уравнение.
Алгоритм – последовательность действий.
Выражения, соответственные значения которых равны при любых значениях, входящих в них переменных, называют тождественно равными.
Равенство, верное при любых значениях входящих в него переменных, называют тождеством.
Степень числа а с показателем 1 называют само это число.
При возведении отрицательного числа в степень с чётным показателем получаем положительное число. При возведении отрицательного числа в степень с нечётным показателем получаем отрицательного числа.
Одночлен – произведение чисел, переменных и их степеней.
Коэффициент одночлена – числовой множитель одночлена, записанного в стандартном виде.
Подобные одночлены – одночлены, имеющие одинаковую буквенную часть.
Многочлены – выражения, состоящие из суммы нескольких одночленов.
Многочлен стандартного вида – многочлен, состоящий из одночленов стандартного вида.
Степень многочлена стандартного вида – наибольшая степень из степени одночлена, из которых составлен многочлен.
Нуль – многочлен – число нуль, также многочлены, тождественно равные нулю.
Тождественно равные выражения – выражения, соответственные значения которых равны при любых значениях входящих в них переменных.
Чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена и полученные произведения сложить.
Чтобы умножить многочлен на многочлен, нужно каждый член одного многочлена умножить на каждый член другого и полученные произведения сложить.
Разложение многочлена на множители: представление многочлена в виде произведения нескольких многочленов.
Формулы сокращенного умножения
Полный квадрат – трехчлен, который можно представить в виде квадрата двучлена.
P =4 a , где а – независимая переменная(может принимать любые значения), Р – зависимая(изменятся в зависимости от а)
Функция – правило, с помощью которого по каждому значению независимой переменной можно найти единственное значение зависимой переменной.
Функциональная зависимость – зависимость одной переменной от другой.
Аргумент — независимая переменная.
Область определения – все значения, которые принимает аргумент.
Значение функции – значение зависимой переменной.
Заданная функция – функция, где указаны её область определения и правило, с помощью которого можно по каждому значению независимой переменной найти значение зависимой переменной.
Область значений функций – все значения, которые принимает зависимая переменная.
Способы задание функции: 1. Описательный, 2. С помощью формул, 3. Табличный.
Все точки координатной плоскости, которые можно отметить, действуя таким способом, образуют график функции.
График функции f – геометрическая фигура, состоящая из всех тех, и только тех точек координатной плоскости, абсциссы которых равны значениям аргумента, а ординаты – соответствующим значениям функции f .
Линейная функция – функция, которую можно задать формулой Её график – прямая.
Линейная функция, которая задается формулой называют прямой пропорциональностью.
Случай, когда значение функции будет оставаться неизменным при любых значениях аргумента.
Равенство, содержащее две переменные называется уравнением с двумя переменными.
Пару значений, обращающую уравнение в верное равенство называют решением уравнения с двумя переменными.
Решить уравнение с двумя переменными – значит найти все его решения или показать, что оно не имеет решений.
График уравнения с двумя переменными – геометрическая фигура, состоящая из всех тех, и только тех точек координатной плоскости, координаты которых (пары чисел) являются решением данного уравнения.
Линейное уравнение с двумя переменными называют уравнение вида
Случай, когда графиком уравнения является прямая.
Решить систему уравнений – значит найти все её решения или показать, что оно не имеет решений.
Суть графического метода: 1) построить на одной координатной плоскости графики уравнений, входящих в систему, 2) найти координаты всех точек пересечения графиков, 3) полученные пары чисел будут искомыми рениями.
Суть метода подстановки: 1) выразить из любого уравнения системы одну переменную через другую, 2) подставить в другое уравнение системы, вместо этой переменной, 3) решить уравнение с одной переменной, 4) подставить найденное значение переменной в выражение, получено на первом шаге, 5) вычислить значение другой переменной.
Суть метода сложения: 1) подобрав «выгодные» множители, преобразовать одно или оба уравнения системы так, чтобы коэффициентом при одной из переменных стали противоположными числами, 2) сложить почленно левые и правые части уравнений, 3) решить уравнение с одной переменной, 4)подставить найденное на третьем шаге значение переменной в любое из уравнений исходной системы, 5) вычислить значение другой переменной.