Elettracompany.com

Компьютерный справочник
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Команда plot в matlab

Команда plot в matlab

2. Оформление графиков функций.

Сейчас рассмотрим ряд вопросов, связанных с внешним видом графиков функций — цветом и стилем линий, которым проведены сами графики, а также различными надписями в пределах графического окна.

Например, следущие команды

x = 0 : 0.1 : 3; y = sin( x );

plot( x, y, ‘r-‘, x, y, ‘ko’ )

позволяют придать графику вид красной сплошной линии, на которой в дискретных

вычисляемых точках проставляются чёрные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как ‘r-‘, что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Второй стиль, помеченный как ‘ko’ означает проведение чёрным цветом (буква k) окружностей (буква o) на месте вычисляемых точек.

В общем случае, функция

plot( x1, y1, s1, x2, y2, s2, )

позволяет объединить несколько графиков функций y1(x1), y2(x2), , проведя их со стилями s1, s2,

В случае функции вида

plot( x1, y1, s1, x1, y1, s2 )

мы можем провести линию графика единственной функции y1(x1) одним цветом, а точки на нём (вычисляемые точки) — другим цветом.

Стили s1, s2, задаются в виде набора трёх символьных маркеров, заключенных в одиночные кавычки. Первый (не обязательно по порядку) из этих маркеров задаёт тип линии:

Второй маркер задаёт цвет:

Последний маркер задаёт тип проставляемых «точек»:

Можно указывать не все три маркера. Тогда используются необходимые маркеры, установленные «по умолчанию». Порядок, в котором указываются маркеры, не является существенным, то есть ‘r+-‘ и ‘-+r’ приводят к одинаковому результату.

Если в строке стиля поставить маркер типа точки, но не проставить маркер на тип линии, то тогда отображаются только вычисляемые точки, а непрерывной линией они не соединяются.

Наиболее мощным способом оформления графиков функций (и выполнения других графических работ) является дескрипторный метод, полное изучение которого относится к так называемой низкоуровневой графике системы MATLAB и выходит за рамки настоящего пособия. Мы, однако, приведём сейчас (и позже) некоторые простые примеры.

Выше мы оформляли график функции sin с помощью непрерывной красной линии и чёрных кружков. Теперь попробуем ограничиться лишь непрерывной линией, но очень толстой. Как это можно сделать? Вот простое решение на базе дескрипторной графики:

x = 0 : 0.1 : 3; y = sin( x );

hPlot = plot( x, y );

set( hPlot, ‘LineWidth’, 7 );

Функция plot через опорные (вычисленные) точки с координатами x, y проводит отрезки прямых линий. Прямые линии в системе MATLAB представляют собой графические объекты типа Line. Эти объекты имеют огромное число свойств и характеристик, которые можно менять. Доступ к этим объектам осуществляется по их описателям (дескрипторам; handles).

Описатель объекта Line, использованного для построения нашего графика, возвращается функцией plot. Мы его запоминаем для дальнейшего использования в переменной hPlot. Затем этот описатель предлагается функции set для опознания конкретного графического объекта. Именно для такого опознанного объекта функция set изменяет характеристики, которые указаны в других аргументах при вызове функции set. В нашем примере мы указали свойство ‘LineWidth’ (толщина линии), для которого задали новое значение 7 (а по умолчанию — 0.5). В результате получается следующая картина:

Текущее значение любого параметра (атрибута; характеристики) графического объекта можно узнать с помощью функции get. Например, если после получения показанного на рисунке графика ввести и исполнить команду

width = get( hPlot, ‘LineWidth’ )

то для переменной width будет получено значение 7.

Теперь от оформления непосредственно линий перейдём к оформлению осей системы координат, к надписям на осях и так далее. MATLAB выбирает пределы на горизонтальной оси равными указанным для независимой переменной. Для зависимой переменной по вертикальной оси MATLAB вычисляет диапазон изменения значений функции. Затем этот вычисленный диапазон приписывается вертикальной оси системы координат, так что график функции оказывается как бы вписанным в прямоугольник.

Если мы хотим отказаться от этой особенности масштабирования при построении графиков в системе MATLAB, то мы должны явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции

axis( [ xmin, xmax, ymin, ymax ] )

причём команду на выполнение этой функции можно вводить с клавиатуры сколько угодно раз уже после построения графика функции, чтобы, глядя на получающиеся визуальные изображения, добиться наилучшего восприятия. Такое масштабирование позволяет получить подробные изображения тех частей графика, которые вызывают наибольший интерес в конкретном исследовании. Например, для ранее полученного графика функции sin, можно сузить пределы по осям координат

axis( [ 1.5, 2.5, 0.5, 2 ] )

чтобы получше разглядеть вершину синусоиды:

Чаще всего этот приём увеличения масштаба изображения применяют при графическом решении уравнений с тем, чтобы получить более высокую точность приближения к корню.

Теперь изменим количество числовых отметок на осях. Их может показаться недостаточно (на горизонтальной оси последнего рисунка их всего три — для значений 1.5 , 2 и 2.5).

Изменить отметки на осях координат можно с помощью функции set, обрабатывающей графический объект Axes. Это объект, который содержит оси координат и белый прямоугольник, внутри которого и проводится сам график функции. Для получения описателя такого объекта применяют функцию gca, которую вызывают без параметров.

В итоге, следующий фрагмент кода

hAxes = gca;

set( hAxes, ‘xtick’, [ 1.5, 1.75, 2.0, 2.25, 2.5 ] )

выполняющийся после построения графика, устанавливает новые метки на горизонтальной оси координат (пять штук).

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel предназначена для проставления названия горизонтальной оси, функция ylabel — то же для вертикальной оси (причём эти надписи ориентированы вдоль осей координат).

Если требуется разместить надпись в произвольном месте рисунка — применяем функцию text:

text( x, y, ‘some text’)

Общий заголовок для графика проставляется функцией title. Кроме того, используя команду

grid on

можно нанести измерительную сетку на всю область построения графика. Применяя все эти средства

title( ‘Function sin(x) graph’ );

xlabel( ‘x coordinate’ ); ylabel( ‘sin(x)’ );

text( 2.1, 0.9, ‘leftarrowsin(x)’ ); grid on;

придаём графику функции следующий вид:

Надпись функцией text помещается, начиная от точки с координатами, указанными первыми двумя аргументами. Специальные символы вводятся внутри текста после символа («обратная косая черта»). В примере мы ввели таким образом специальный символ «стрелка влево». Обозначения для специальных символов совпадают с таковыми в системе подготовки научных текстов TeX.

Команда plot в matlab

Глава 3. Работа с графиками в MatLab

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

Читать еще:  Matlab экспонента в степени

3.1. Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до . Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Рис. 3.1. Отображение функции синуса с помощью функции plot().

Функцию plot() можно записать и с одним аргументом x или y:

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

x = 0:0.01:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,x,y2);

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а – plot(x); б – plot(y).

Рис. 3.3. Отображение двух графиков в одних координатных осях.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

y1 = sin(x);
y2 = cos(x);

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу

в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией

plot([y1’ y2’]); % апострофы переводят вектор-строку
% в вектор-столбец

в виде двух графиков (рис. 3.4).

Рис. 3.4. Отображение двумерной матрицы в виде двух графиков.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

plot(x1, y1); % рисование первого графика
figure; % создание 2-го графического окна
plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического окна, которое необходимо создать или сделать активным, если оно уже создано. Таким образом, вышеприведенную программу можно записать так.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1); %создание окна с номером 1
plot(x1, y1); % рисование первого графика
figure(2); % создание графического окна с номером 2
plot(x2, y2); % рисование 2-го графика во 2-м окне

При выполнении данной программы на экране всегда будут отображены только два графических окна с номерами 1 и 2, и в них показаны графики функций синуса и косинуса соответственно.

В некоторых случаях большего удобства представления информации можно достичь, отображая два графика в одном графическом окне. Это достигается путем использования функции subplot(), имеющая следующий синтаксис:

Рассмотрим пример отображения двух графиков друг под другом вышеприведенных функций синуса и косинуса.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1);
subplot(2,1,1); % делим окно на 2 строки и один столбец
plot(x1,y1); % отображение первого графика
subplot(2,1,2); % строим 2-ю координатную ось
plot(x2,y2); % отображаем 2-й график в новых осях

Результат работы программы показан на рис. 3.5.

Аналогичным образом можно выводить два и более графиков в столбец, в виде таблицы и т.п. Кроме того, можно указывать точные координаты расположения графика в графическом окне. Для этого используется параметр position в функции subplot():

subplot(‘position’, [left bottom width height]);

где left – смещение от левой стороны окна; bottom – смещение от нижней стороны окна; width, height – ширина и высота графика в окне. Все эти переменные изменяются в пределах от 0 до 1.

Рис. 3.5. Пример работы функции subplot.

Ниже представлен фрагмент программы отображения графика функции синуса в центре графического окна. Результат работы показан на рис. 3.6.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

subplot(‘position’, [0.33 0.33 0.33 0.33]);
plot(x1,y1);

В данном примере функция subplot() смещает график на треть от левой и нижней границ окна и рисует график с шириной и высотой в треть графического окна. В результате, получается эффект рисования функции синуса по центру основного окна.

Таким образом, используя параметр position можно произвольно размещать графические элементы в плоскости окна.

Рис. 3.6. Пример работы функции subplot с параметром position.

РАБОТА С ГРАФИКАМИ В MATLAB

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до . Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

Читать еще:  Как в matlab увеличить шрифт

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Рис. 3.1. Отображение функции синуса с помощью функции plot().

Функцию plot() можно записать и с одним аргументом x или y:

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а — plot(x); б — plot(y).

Рис. 3.3. Отображение двух графиков в одних координатных осях.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу

в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией plot([y1′ y2′]); % апострофы переводят вектор-строку % в вектор-столбец в виде двух графиков (рис. 3.4).

Рис. 3.4. Отображение двумерной матрицы в виде двух графиков.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

plot(x1, y1); % рисование первого графика

figure; % создание 2-го графического окна

plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического о.

Рис. 3.8. Пример работы функции axis()

В заключении данного параграфа рассмотрим возможности создания подписей графиков, осей и отображения сетки на графике. Для этого используются функции языка MatLab, перечисленные в табл. 3.4.

Технология построения графиков в Matlab

Построение графика по узловым точкам

Графики в Matlab, также как в табличном процессоре, могут быть построены по узловым точкам. Поскольку MATLAB — матричная система, совокупность узловых точек у(х) для построения графика задается векторами X и Y одинакового размера.

Графики MATLAB строит в отдельных окнах, называемых графическими окнами. В главном меню окна есть позиция Tools (Инструменты), которая позволяет вывести или скрыть инструментальную панель, видимую в верхней части окна графики. Средства этой панели позволяют легко управлять параметрами графиков и наносить на них текстовые комментарии в любом месте.

В Matlab для построения графиков функций по узловым точкам в декартовой системе координат служит функция plot. Функция plot имеет несколько синтаксических конструкций:
plot (X, Y) — строит график функции у(х), координаты точек (х, у) которой берутся из векторов одинакового размера Y и X. Если X или Y матрица, то строится семейство графиков по данным, содержащимся в колонках матрицы;
plot(Y) — строит график у(i), где значения у берутся из вектора Y, a i представляет собой индекс соответствующего элемента. Если Y содержит комплексные элементы, то выполняется команда plot (real (Y), imag(Y)). Во всех других случаях мнимая часть данных игнорируется;
plot(X,Y,S) — аналогична команде plot(X,Y), но тип линии графика можно задавать с помощью строковой константы S. Значениями константы S могут быть следующие символы:

Если функция задана аналитической моделью, то для построения графика нужно определить вектор значений аргумента для узловых точек, вычислить значения функции при заданных значениях аргумента и сохранить эти значения в виде вектора, а затем применить функцию plot. Приведенный ниже пример иллюстрирует построение графика функций — sin(x) по узловым точкам :

>> x=[0; 0.4; 0.8; 1.2; 1.4;1.8;2.2;2.6;3;3.4;3.8]; Y=sin(x); plot(x,Y)

В этом примере уже определены значения вектора x , вычисляемые значения функции содержатся в векторе Y.

Построение двумерного графика одной функции

Для того, чтобы построить график функции y = f(x) , необходимо сформировать два одномерных массива x и y одинаковой размерности, а затем использовать функцию plot .

Пример 1 . Требуется построить график функции на интервале значений X [-1; 1].

Технология построения графика этой функции в MS Excel рассмотрена в статье . Результат решения представлен на рис. 1.

Окно команд с инструкциями для решения задачи в Matlab приведены на рис. 2.

Пояснения к инструкциям

В результате обращения к функции plot(x,y) будет создано окно с именем Figure 1 , в котором будет построен график. Результат решения приведен на рис. 3.

Построение графиков нескольких функций в одной системе координат

Построение графиков нескольких функций в одной системе координат можно выполнить двумя способами:
— использовать функцию plot в формате :
plot (x1, y1, x2, y2, … , xn, yn ) ,
где x1, y1 – массивы значений абсцисс и ординат графика первой функции, x2, y2 – массивы значений абсцисс и ординат графика второй функции , … , xn, yn – массивы значений абсцисс и ординат графика n-ой функции;
— использовать каждый раз функцию plot( x, y) для построения каждого графика, но перед построением каждого последующего графика включать команду hold on , блокирующую режим создания нового окна.

Пример 2 . Требуется построить в одной системе координат графики функций y1=1-2х и у2=Ln x на интервале значений аргумента х [0,2 ; 3 ] . Построение графиков этих функций в Excel при решении систем уравнений рассматривалось в статье .

Читать еще:  Matlab что это

Решение первым способом
В окне команд Matlab введем инструкции, как показано на рис. 4.

В результате выполнения инструкций Matlab выведет графики, как показано на рис. 5.

Решение вторым способом

В окне команд Matlab введем инструкции, как показано на рис. 6.

В результате выполнения инструкций Matlab сначала выведет график первой функции, а затем в этом же окне выведет график второй функции y2 (рис. 7).

Как видим, графики на рис. 5 и 7 идентичны.
Относительно сравнения сложности создания графиков в Matlab и Excel можно сделать вывод, что в Matlab не требуется предварительно создавать таблицу значений функций и аргументов, величину шага можно сделать значительно меньше, поэтому графики получаются более точными.

Построение графиков без использования узловых точек

Если функция задана аналитически, то ее график можно построить без использования узловых точек.

Построить в Matlab график без узловых точек можно с помощью специальной графической функции fplot. Функция имеет синтаксис:
fplot(‘f(x)’, [ xmin xmax ]) ,
где f(x) – аналитическая запись выражения функции, xmin и xmax — числовые значения границ диапазона изменения аргумента.
Функция fplot позволяет строить функцию, заданную в символьном виде, в интервале изменения аргумента х от xm in до xmax без фиксированного шага изменения х .

В ряде случаев бывает необходимо, чтобы на графике была отображена сетка. Включение отображения сетки, которая строится пунктирными линиями, выполняется командой grid on. Например, график функции sin(x) (рис. 3) в диапазоне x =[-pi/2 : pi/2] можно построить с помощью инструкции >> fplot (‘sin(x)’, [-pi/2 pi/2]); grid on.

Оформление графиков

Оформление графиков в MATLAB можно выполнить двумя способами:
— с помощью команд Matlab, размещенных в пиктографическом меню Insert ;
— функциями Matlab, которые записываются в виде инструкций в командном окне.

В списке пиктографического меню есть следующие команды (рис. 8):

x Label, Y Label, Z Labe l — подписи осей осей;
Title — надпись названия диаграммы;
Legend — легенда, т.е. обозначение линий графиков;
Colorbar — вывод цветовой палитры;
Arrow — рисование стрелки;
Line — рисование линии;
Text — позволяет поместить текст в области построения диаграммы;
Axes — позволяет построить оси.

Команды Matlab для оформления графиков

— команда grid on наносит сетку на график;
— функция title(‘заголовок’) выводит заголовок графика;
— функции xlabel(‘подпись оси х’), ylabel(‘подпись оси у’) служат для подписи осей х и у соответственно;
— функция legend(‘легенда1’, ‘легенда2’, … , ‘легендаn’, k) выводит легенды для каждого из n графиков, параметр k определяет месторасположение легенды в графическом окне: -1 – в правом верхнем углу графического окна, за пределами графика; 0 – автоматически выбрать наилучшее месторасположение; 1 – в правом верхнем углу графика (значение по умолчанию); 2, 3, 4 – в левом верхнем, в левом нижнем, в правом нижнем углах графика соответственно.

Пример 3. Требуется построить график функции Sin(x) на интервале х=<-pi/2; pi/2] и оформить его.

Решение. Создадим М-файл с названием Chart.
Запишем инструкции, как на рис. 9.

Запустим М-файл на выполнение- будет выведен график с соответствующими подписями (рис. 10).

Работа с окном команд и редактором в MATLAB

MATLAB – популярный пакет программ для решения технических, математических, статистических задач, вычислений и моделирования. Так же называется и одноимённый язык программирования, который используется в этом пакете. Давайте рассмотрим порядок работы с окном команд и редактором среды MATLAB.

1 Работа с окном команд в среде MATLAB

В среде MATLAB есть несколько режимов работы. Самый простой – это ввод команд непосредственно в окно команд (Command Window).

Окно команд MATLAB

Если оно не видно в интерфейсе программы, откроем его. Найти окно команд можно через меню Desktop Command Window.

Давайте для примера введём в это окно последовательно друг за другом команды

и нажмём клавишу «Ввод» (Enter). Программа моментально создаст переменную X, создаст переменную Y и посчитает её значения по заданной функции, а затем построит её график.

Стрелками клавиатуры вверх и вниз в окне команд мы можем переключаться между введёнными командами, тут же изменять их, а по нажатию Enter отправлять среде MATLAB на исполнение. Стрелками влево и вправо можно перемещаться по введённой команде и редактировать её. Если в конце команды стоит точка с запятой, то результат будет посчитан, но не будет выведен в окно команд; в противном случае результат выполнения команды будет отображён тут же. По любой функции в среде MATLAB есть подробная встроенная справка. Например, чтобы получить справку по команде plot, выделите эту команду, нажмите на неё правой кнопкой мыши, и в открывшемся контекстном меню выберите пункт Help on Selection или нажмите клавишу F1.

Получение справки по командам MATLAB

Удобно? Безусловно. И главное – очень быстро. Все эти действия занимают несколько секунд.

Но что если нужна более сложная организация команд? Если нужно циклическое исполнение каких-то команд? Вводить команды вручную по одной, а потом долго искать их в истории может быть довольно утомительным делом.

2 Работа с редактором в среде MATLAB

Чтобы упростить жизнь учёному, инженеру или студенту, служит окно редактора (Editor). Давайте откроем окно редактора через меню Desktop Editor.

Открытие редактора MATLAB

В окне редактора можно создавать новые переменные, строить графики, писать программы (скрипты), создавать компоненты для обмена с другими средами, создавать приложения с пользовательским интерфейсом (GUI), а также редактировать имеющиеся.

Нас в данный момент интересует написание программы, содержащей функции для повторного использования в будущем. Поэтому идём в меню File редактора и выбираем New M-File.

Создание нового M-файла в MATLAB

М-файлами в среде МАТЛАБ называются файлы, содержащие текст программ (скрипты) или определённые пользователем функции.

Давайте напишем в редакторе простую функцию draw_plot:

Ввод текста программы в окне редактора MATLAB

Мы добавили вторую функцию и будем выводить сразу два графика рядом друг с другом. Знаком процента обозначаются в среде MATLAB комментарии.

Не забудем сохранить программу. Стандартное расширение файла с программой МАТЛАБ – *.m. Теперь закройте редактор и окно с графиком, который мы построили ранее.

Переходим обратно в окно команд.

Можно очистить историю команд, чтобы лишняя информация нас не отвлекала. Для этого кликните правой кнопкой мыши на поле ввода команд и в открывшемся контекстном меню выберите пункт Clear Command Window.

Переменная X у нас осталась после предыдущего эксперимента, мы её не изменяли и не удаляли. Поэтому в окно команд можно сразу ввести:

Вы увидите, что MATLAB прочитает нашу функцию из файла и выполнит её, нарисовав график.

Результат выполнения скрипта, написанного в редакторе MATLAB

Ссылка на основную публикацию
Adblock
detector