Elettracompany.com

Компьютерный справочник
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Matlab массив строк

Урок 5 — Работа с массивами в Матлаб(Matlab)

Все данные MatLab представляет в виде массивов. Очень важно правильно понять, как использовать массивы. Без этого невозможна эффективная работа в MatLab, в частности построение графиков, решение задач линейной алгебры, обработки данных, статистики и многих других. В данном подразделе описаны вычисления с векторами.

Массив — упорядоченная, пронумерованная совокупность однородных данных. У массива должно быть имя. Массивы различаются по числу размерностей или измерений: одномерные, двумерные, многомерные. Доступ к элементам осуществляется при помощи индекса. В MatLab нумерация элементов массивов начинается с единицы. Это значит, что индексы должны быть больше или равны единице.

Важно понять, что вектор, вектор-строка или матрица являются математическими объектами, а одномерные, двумерные или многомерные массивы — способы хранения этих объектов в компьютере. Всюду дальше будут использоваться слова вектор и матрица, если больший интерес представляет сам объект, чем способ его хранения. Вектор может быть записан в столбик (вектор-столбец) и в строку (вектор-строка). Вектор-столбцы и вектор-строки часто будут называться просто векторами, различие будет сделано в тех случаях, если важен способ хранения вектора в MatLab. Векторы и матрицы обозначаются курсивом, а соответствующие им массивы прямым моноширинным шрифтом, например: «вектор а содержится в массиве а», «запишите матрицу R в массив r».

Ввод сложение и вычитание векторов

Работу с массивами начнем с простого примера — вычисления суммы векторов:
, .

Для хранения векторов используйте массивы а и b. Введите массив а в командной строке, используя квадратные скобки и разделяя элементы вектора точкой с запятой:

» a = [1.3; 5.4; 6.9]
a =
1.3000
5.4000
6.9000

Так как введенное выражение не завершено точкой с запятой, то пакет MatLab автоматически вывел значение переменной а. Введите теперь второй вектор, подавив вывод на экран

Для нахождения суммы векторов используется знак +. Вычислите сумму, запишите результат в массив с и выведите его элементы в командное окно:

» с = а + b
с =
8.4000
8.9000
15.1000

Узнайте размерность и размер массива а при помощи встроенных функций ndims и size:

Итак, вектор а хранится в двумерном массиве а размерностью три на один (вектор-столбец из трех строк и одного столбца). Аналогичные операции можно проделать и для массивов b и c. Поскольку числа в пакете MatLab представляются в виде двумерного массива один на один, то при сложении векторов используется тот же знак плюс, что и для сложения чисел.

Ввод вектор-строки осуществляется в квадратных скобках, однако элементы следует разделять пробелами или запятыми. Операции сложения, вычитания и вычисление элементарных функций от вектор-строк производятся так же, как и с вектор-столбцами, в результате получается вектор-строка того же размера, что и исходные. Например:

» s1 = [3 4 9 2]
s1 =
3 4 9 2
» s2 = [5 3 3 2]
s1 =
5 3 3 2
» s3 = s1 + s2
s3 =
8 7 12 4

Замечание 1

Если размеры векторов, к которым применяется сложение или вычитание, не совпадают, то выдается сообщение об ошибке.

Естественно, для нахождения разности векторов следует применять знак минус, с умножением дело обстоит несколько сложнее.
Введите две вектор-строки:

» v1 = [2 -3 4 1];
» v2 = [7 5 -6 9];

Операция .* (не вставляйте пробел между точкой и звездочкой!) приводит к поэлементному умножению векторов одинаковой длины. В результате получается вектор с элементами, равными произведению соответствующих элементов исходных векторов:

» u = v1.*v2
u =
14 -15 -24 9

При помощи .^ осуществляется поэлементное возведение в степень:

» р = v1.^2
p =
4 9 16 1

Показателем степени может быть вектор той же длины, что и возводимый в степень. При этом каждый элемент первого вектора возводится в степень, равную соответствующему элементу второго вектора:

» p = vl.^v2
Р =
128.0000 -243.0000 0.0002 1.0000

Деление соответствующих элементов векторов одинаковой длины выполняется с использованием операции ./

» d = v1./v2
d =
0.2857 -0.6000 -0.6667 0.1111

Обратное поэлементное деление (деление элементов второго вектора на соответствующие элементы первого) осуществляется при помощи операции .

» dinv = vl.v2
dinv =
3.5000 -1.6667 -1.5000 9.0000

Итак, точка в MatLab используется не только для ввода десятичных дробей, но и для указания того, что деление или умножение массивов одинакового размера должно быть выполнено поэлементно.
К поэлементным относятся и операции с вектором и числом. Сложение вектора и числа не приводит к сообщению об ошибке. MatLab прибавляет число к каждому элементу вектора. То же самое справедливо и для вычитания:

» v = [4 6 8 10];
» s = v + 1.2
s =
5.2000 6.2000 9.2000 11.2000
» r = 1.2 — v
r =
-2.8000 -4.8000 -6.8000 -8.8000
» r1 = v — 1.2
r1 = 2.8000 4.8000 6.8000 8.8000

Умножать вектор на число можно как справа, так и слева:

» v = [4 6 8 10];
» p = v*2
р =.
8 12 16 20
» pi = 2*v
pi =
8 12 16 20

Делить при помощи знака / можно вектор на число:

» р = v/2
p =
2 3 4 5

Попытка деления числа на вектор приводит к сообщению об ошибке:

» р = 2/v
. Error using ==> /
Matrix dimensions must agree.

Если требуется разделить число на каждый элемент вектора и записать результат в новый вектор, то следует использовать операцию ./

» w = [4 2 6];
» d = 12./w
d =
3 6 2

Все вышеописанные операции применимы как к вектор-строкам, так и к вектор-столбцам.
Особенность MatLab представлять все данные в виде массивов является очень удобной. Пусть, например, требуется вычислить значение функции sin сразу для всех элементов вектора с (который хранится в массиве с) и записать результат в вектор d. Для получения вектора d достаточно использовать один оператор присваивания:

» d = sin(с)
d =
0.8546
0.5010
0.5712

Итак, встроенные в MatLab элементарные функции приспосабливаются к виду аргументов; если аргумент является массивом, то результат функции будет массивом того же размера, но с элементами, равными значению функции от соответствующих элементов исходного массива. Убедитесь в этом еще на одном примере. Если необходимо найти квадратный корень из элементов вектора dсо знаком минус, то достаточно записать:

» sqrt(-d)
ans =
0 + 0.9244i
0 + 0.7078i
0 + 0.7558i

Оператор присваивания не использовался, поэтому пакет MatLab записал ответ в стандартную переменную ans.

Для определения длины вектор-столбцов или вектор-строк служит встроенная функция length:

Из нескольких вектор-столбцов можно составить один, используя квадратные скобки и разделяя исходные вектор-столбцы точкой с запятой:

Для сцепления вектор-строк также применяются квадратные скобки, но сцепляемые вектор-строки отделяются пробелами или запятыми:

» v1 = [1 2];
» v2 = [3 4 5];
» v = [v1 v2]
v =
1 2 3 4 5

Работа с элементами векторов

Доступ к элементам вектор-столбца или вектор-строки осуществляется при помощи индекса, заключаемого в круглые скобки после имени массива, в котором хранится вектор. Если среди переменных рабочей среды есть массив v, определенный вектор-строкой

» v = [1.3 3.6 7.4 8.2 0.9];

то для вывода, например его четвертого элемента, используется индексация:

Появление элемента массива в левой части оператора присваивания приводит к изменению в массиве

» v(2) = 555
v =
1.3000 555.0000 7.4000 8.2000 0.9000

Из элементов массива можно формировать новые массивы, например

» u = [v(3); v(2); v(1)]
u =
7.4000
555.0000
1.3000

Для помещения определенных элементов вектора в другой вектор в заданном порядке служит индексация при помощи вектора. Запись в массив w четвертого, второго и пятого элементов v производится следующим образом:

» ind = [4 2 5];
» w = v(ind)
w =
8.2000 555.0000 0.9000

MatLab предоставляет удобный способ обращения к блокам последовательно расположенных элементов вектор-столбца или вектор-строки. Для этого служит индексация при помощи знака двоеточия. Предположим, что в массиве w, соответствующем вектор-строке из семи элементов, требуется заменить нулями элементы со второго по шестой. Индексация при помощи двоеточия позволяет просто и наглядно решить поставленную задачу:

» w = [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» w(2:6) = 0;
» w
w =
0.1000 0 0 0 0 0 9.8000

Присваивание w(2:6) = 0 эквивалентно последовательности команд
w(2) = 0; w(3)=0; w(4)=0; w(5)=0; w(6)=0.
Индексация при помощи двоеточия оказывается удобной при выделении части из большого объема данных в новый массив:

» w — [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» wl = w(3:5)
wl =
3.3000 5.1000 2.6000

Составьте массив w2, содержащий элементы w кроме четвертого. В этом случае удобно использовать двоеточие и сцепление строк:

» w2 = [w(l:3) w(5:7)]
w2 =
0.1000 2.9000 3.3000 2.6000 7.1000 9.8000

Элементы массива могут входить в выражения. Нахождение, например среднего геометрического из элементов массива u, можно выполнить следующим образом:

Конечно, этот способ не очень удобен для длинных массивов. Для того чтобы найти среднее геометрическое, необходимо набрать в формуле все элементы массива. В MatLab существует достаточно много специальных функций, облегчающих подобные вычисления.

Применение функций обработки данных к векторам

Перемножение элементов вектора-столбца или вектора-строки осуществляется при помощи функции prod:

» z = [3; 2; 1; 4; 6; 5];
» р = prod(z)
p = 720

Функция sum предназначена для суммирования элементов вектора. С ее помощью нетрудно вычислить среднее арифметическое элементов вектора z:

» sum(z)/length(z)
ans =
3.5000

В MatLab имеется и специальная функция mean для вычисления среднего арифметического:

Для определения минимального и максимального из элементов вектора служат встроенные функции min и max:

Читать еще:  Matlab в электроэнергетике

» m1 = max(z)
m1 =
6
» m2 = min(z)
m2 =
1

Часто необходимо знать не только значение минимального или максимального элемента в массиве, но и его индекс (порядковый номер). В этом случае встроенные функции min и max необходимо использовать с двумя выходными аргументами, например

» [m, k] = min(z)
m =
1
k =
3

В результате переменной m будет присвоено значение минимального элемента массива z, а номер минимального элемента занесен в переменную k.
Для получения информации о различных способах использования функций следует набрать в командной строке help и имя функции. MatLab выведет в командное окно всевозможные способы обращения к функции с дополнительными пояснениями.
В число основных функций для работы с векторами входит функция упорядочения вектора по возрастанию его элементов sort.

» r = [9.4 -2.3 -5.2 7.1 0.8 1.3];
» R = sort(r)
R =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000

Можно упорядочить вектор по убыванию, используя эту же функцию sort:

» R1 = -sort(-r)
R1 =
9.4000 7.1000 1.3000 0.8000 -2.3000 -5.2000

Упорядочение элементов в порядке возрастания их модулей производится с привлечением функции abs:

» R2 = sort(abs(r))
R2 =
0.8000 1.3000 2.3000 5.2000 7.1000 9.4000

Вызов sort с двумя выходными аргументами приводит к образованию массива индексов соответствия элементов упорядоченного и исходного массивов:

» [rs, ind] = sort(r)
rs =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000
ind =
3 2 5 6 4 1

Документация

Создание массивов строк

Строковые массивы были введены в R2016b. Строковые массивы хранят части текста и обеспечивают набор функций для работы с текстом как данные. Можно индексировать в, измениться и конкатенировать массивы строк, как вы можете с массивами любого другого типа. Также можно получить доступ к символам в строке и добавить текст к строкам с помощью plus оператор. Чтобы перестроить строки в массиве строк, используйте функции, такие как split соединение , и sort .

Создание массивов строк от переменных

MATLAB® обеспечивает строковые массивы, чтобы сохранить части текста. Каждый элемент массива строк содержит последовательность символов 1 на n.

Начиная в R2017a, можно создать строку с помощью двойных кавычек.

Как альтернатива, можно преобразовать вектор символов в строку с помощью string функция. chr 1 17 вектор символов. str строка 1 на 1, которая имеет тот же текст как вектор символов.

Создайте массив строк, содержащий несколько строк с помощью [] оператор. str 2 3 массив строк, который содержит шесть строк.

Найдите длину каждой строки в str с strlength функция. Используйте strlength , не length , определить количество символов в строках.

Как альтернатива, можно преобразовать массив ячеек из символьных векторов в массив строк с помощью string функция. MATLAB отображает строки в строковых массивах с двойными кавычками и векторы символов отображений в массивах ячеек с одинарными кавычками.

В дополнение к векторам символов можно преобразовать числовой, datetime, длительность и категориальные значения к строкам с помощью string функция.

Преобразуйте числовой массив в массив строк.

Преобразуйте значение datetime в строку.

Кроме того, можно считать текст из файлов в строковые массивы с помощью readtable textscan , и fscanf функции.

Создание пустых и отсутствующих строк

Строковые массивы могут содержать и пустые и отсутствующие значения. Пустая строка содержит нулевые символы. Когда вы отображаете пустую строку, результатом является пара двойных кавычек ни с чем между ними ( «» ). Отсутствующая строка является строкой, эквивалентной NaN для числовых массивов. Это указывает, где массив строк имеет отсутствующие значения. Когда вы отображаете отсутствующую строку, результатом является , без кавычек.

Создайте массив пустой строки с помощью strings функция. Когда вы вызываете strings без аргументов это возвращает пустую строку. Обратите внимание на то, что размер str 1 на 1, не 0 на 0. Однако str содержит нулевые символы.

Создайте пустой символьный вектор с помощью одинарных кавычек. Обратите внимание на то, что размер chr 0 на 0.

Создайте массив строк, где каждый элемент является пустой строкой. Можно предварительно выделить массив строк с strings функция.

Чтобы создать отсутствующую строку, преобразуйте отсутствующее значение с помощью string функция. Отсутствующая строка отображается как .

Можно создать массив строк и с пустыми и с отсутствующими строками. Используйте ismissing функция, чтобы определить, какие элементы являются строками с отсутствующими значениями. Обратите внимание на то, что пустая строка не является отсутствующей строкой.

Сравните отсутствующую строку с другой строкой. Результатом всегда является 0 ложь ), даже когда вы сравниваете отсутствующую строку с другой отсутствующей строкой.

Доступ к элементам массива строк

Строковые массивы поддерживают операции над массивами, такие как индексация и изменение. Используйте индексацию массива, чтобы получить доступ к первой строке str и все столбцы.

Доступ к второму элементу во второй строке str .

Присвойте новую строку вне границ str . MATLAB расширяет массив и заполняет освобожденные элементы с отсутствующими значениями.

Доступ к символам в строках

Можно индексировать в массив строк с помощью фигурных скобок, <> , к символам доступа непосредственно. Используйте фигурные скобки, когда необходимо будет получить доступ и изменить символы в строковом элементе. Индексация с фигурными скобками обеспечивает совместимость для кода, который мог работать или со строковыми массивами или с массивами ячеек из символьных векторов. Но каждый раз, когда возможно, используйте строковые функции, чтобы работать с символами в строках.

Доступ к второму элементу во второй строке с фигурными скобками. chr вектор символов, не строка.

Доступ к вектору символов и возвращает первые три символа.

Найдите пробелы в строке и замените их на тире. Используйте isspace функция, чтобы осмотреть отдельные символы в строке. isspace возвращает логический вектор, который содержит истинное значение везде, где существует пробел. Наконец, отобразите модифицированный строковый элемент, str(2,2) .

Обратите внимание на то, что в этом случае можно также заменить пробелы с помощью replace функция, не обращаясь к изогнутой индексации фигурной скобки.

Конкатенация строк в массив строк

Конкатенация представляет в виде строки в массив строк так же, как вы конкатенировали бы массивы любого другого вида.

Конкатенация двух строковых массивов с помощью квадратных скобок, [] .

Транспонируйте str1 и str2 . Конкатенация их и затем вертикально конкатенирует заголовки столбцов на массив строк. Когда вы конкатенируете векторы символов в массив строк, векторы символов автоматически преобразованы в строки.

Добавление текста к строкам

Чтобы добавить текст к строкам, используйте plus оператор + . plus оператор добавляет текст к строкам, но не изменяет размер массива строк.

Добавьте фамилию к массиву имен. Если вы добавляете вектор символов к строкам, то вектор символов автоматически преобразован в строку.

Добавьте различные фамилии. Можно добавить текст к массиву строк от массива строк или от массива ячеек из символьных векторов. Когда вы добавляете нескалярные массивы, они должны быть одного размера.

Добавьте отсутствующую строку. Когда вы добавляете отсутствующую строку с оператором плюс, выход является отсутствующей строкой.

Разделение, присоединение, и сортировка массива строк

MATLAB обеспечивает богатый набор функций, чтобы работать со строковыми массивами. Например, можно использовать split соединение , и sort функции, чтобы перестроить массив строк names так, чтобы имена были в алфавитном порядке фамилией.

Разделите names на пробелах. Разделение изменений names от массива строк 5 на 1 до 5 2 массива.

Переключите столбцы names так, чтобы фамилии были в первом столбце. Добавьте запятую после каждой фамилии.

Соедините фамилии и имена. join функционируйте помещает пробел между строками, которые он соединяет. После соединения, names массив строк 5 на 1.

Сортировка элементов names так, чтобы они были в алфавитном порядке.

Смотрите также

Похожие темы

Открытый пример

У вас есть модифицированная версия этого примера. Вы хотите открыть этот пример со своими редактированиями?

Документация MATLAB
Поддержка

© 1994-2020 The MathWorks, Inc.

1. Если смысл перевода понятен, то лучше оставьте как есть и не придирайтесь к словам, синонимам и тому подобному. О вкусах не спорим.

2. Не дополняйте перевод комментариями “от себя”. В исправлении не должно появляться дополнительных смыслов и комментариев, отсутствующих в оригинале. Такие правки не получится интегрировать в алгоритме автоматического перевода.

3. Сохраняйте структуру оригинального текста — например, не разбивайте одно предложение на два.

4. Не имеет смысла однотипное исправление перевода какого-то термина во всех предложениях. Исправляйте только в одном месте. Когда Вашу правку одобрят, это исправление будет алгоритмически распространено и на другие части документации.

5. По иным вопросам, например если надо исправить заблокированное для перевода слово, обратитесь к редакторам через форму технической поддержки.

Matlab массив строк

Синтаксис операций с массивами

Так как массивы являются важнейшим объектом нашего внимания в системе MATLAB, рассмотрим синтаксис операций с массивами более подробно.

До сих пор были рассмотрены две операции, специально предназначенные для работы с массивами: операция конкатенации (использует квадратные скобки) и операция индексации (использует круглые скобки).

Напомним также, что для операции конкатенации в качестве разделителей элементов используются либо запятые (пробелы), либо точки с запятой. Причём в первом случае речь идёт о «горизонтальной» конкатенации или конкатенации вдоль строк, а во втором — о «вертикальной» конкатенации или конкатенации вдоль столбцов. Например, операция

Читать еще:  Iis php mysql

из двух матриц A1 и A2 , у которых предполагается одинаковым число строк, производит более «широкую» матрицу C с числом столбцов, равным сумме столбцов матриц-слагаемых.

соединяет матрицы A1 и A2 вертикально, производя матрицу C , у которой число строк будет равно сумме числа строк матриц A1 и A2 . В случае разного числа столбцов у A1 и A2 появится сообщение об ошибке:

Операция конкатенации является мощной групповой операцией, позволяющей компактно выразить большой объём реальных действий. Без применения конкатенации пришлось бы писать большое количество присваиваний значений отдельным элементам массивов. Операндами операции конкатенации могут служить числа, вектор-строки, вектор-столбцы, матрицы, а также массивы ещё большей размерности. Это делает операцию конкатенации довольно сложной для восприятия человеком, так что мы к ней ещё вернёмся, рассматривая конкретные более сложные примеры.

В связи с операцией индексации применяется единственный разделитель — запятая. Она отделяет друг от друга индексы, соответствующие разным направлениям группировки элементов массива (для двумерных массивов — вдоль строк и вдоль столбцов).

Существует ещё одна мощная групповая операция, применяемая к массивам. Это операция формирования диапазона значений, обозначаемая двоеточием. Составим одномерный массив diap1 , состоящий из всех вещественных чисел от 3.7 (включительно) с приращением 0.3 и не более 8.947 . Для этого применяем операцию, обозначаемую двоеточием:

diap1 = 3.7 : 0.3 : 8.947 ;

Последняя точка с запятой здесь использована для подавления немедленного вывода в командное окно системы MATLAB результатов операции, то есть всех величин элементов массива diap1 . В случае большого их числа показ всех элементов будет сопровождаться быстрой протяжкой содержимого окна, что довольно утомительно для глаз.

Довольно трудно так сразу в уме подсчитать количество попадающих в заданный диапазон и, соответственно в массив diap1 , элементов. Поэтому вызовем функцию length :

Чаще всего эту операцию применяют для формирования диапазона целых чисел:

diap2 = 4 : 2 : 26

Если приращение равно единице, то его можно для краткости опускать:

После того, как мы ввели последнюю из специфических для работы с массивами операций, рассмотрим некоторые тонкости их совместного применения.

Применим операцию «диапазон» в контексте операции индексации:

a = [ 1 2 ; 3 4 ; 5 6 ];
b = a(2,:)
b =
3 4

Здесь операция «диапазон» позволяет захватить все имеющиеся значения второго индекса. В результате переменная b становится равной одномерному массиву, состоящему из всех элементов второй строки двумерного массива a . Таким образом, компактное выражение a(2,:) позволяет «взять» из матрицы a её вторую строку.

Это же выражение позволяет удалить строку (или столбец), если при этом использовать понятие пустого массива, который обозначается как [ ] :

Теперь рассмотрим другой пример. Пусть у нас имеется одномерный массив

Попробуем выделить из этого массива элементы со второго по четвёртый. Для этого запишем индексное выражение

в котором указано не единственное значение индекса, а целый диапазон индексов, значения которых последовательно возрастают от 2 до 4 . Это означает, что мы выполняем групповую операцию, помещающую в переменную b последовательно второй, третий и четвёртый элементы массива a . Таким образом формируется одномерный массив b :

Из приведённого выше объяснения вытекает способ выбрать из массива a , например, три элемента в произвольном порядке, то есть сформировать одномерный массив b , первый элемент которого равен последнему элементу массива a , второй элемент b равен третьему элементу a , а третий элемент b равен первому элементу a . Вот решающее эту задачу выражение:

так как в индексации участвует целый набор индексов, первый из которых равен 5 , второй индекс (по порядку следования) равен 3 , а третий равен 1 . Это и объясняет порядок формирования элементов массива b .

Переставим местами столбцы в матрице

a = [ 1 2 3; 4 5 6; 7 8 9];

Мы хотим, чтобы последний столбец стал первым, второй — последним, а первый — вторым. Вот подходящее решение:

Так можно не только переставлять строки или столбцы, но и удалять часть из них (выше для этой цели использовался пустой массив), а другие строки (столбцы) дублировать.

Например, из матрицы a с размером 3×3, полученной предыдущей операцией и имеющей вид

можно сделать матрицу c с размером 4×5 :

c = a([ 2 3 3 2 ] , [ 2 1 3 2 1 ])

При получении матрицы c из матрицы a первая её строка удалена (не используется), вторая и третья строки — продублированы (взяты дважды). При этом каждая из этих строк «растянута» за счёт дублирования их первого и второго элементов (с последующей перестановкой элементов местами).

Урок 5 — Работа с массивами в Матлаб(Matlab)

Все данные MatLab представляет в виде массивов. Очень важно правильно понять, как использовать массивы. Без этого невозможна эффективная работа в MatLab, в частности построение графиков, решение задач линейной алгебры, обработки данных, статистики и многих других. В данном подразделе описаны вычисления с векторами.

Массив — упорядоченная, пронумерованная совокупность однородных данных. У массива должно быть имя. Массивы различаются по числу размерностей или измерений: одномерные, двумерные, многомерные. Доступ к элементам осуществляется при помощи индекса. В MatLab нумерация элементов массивов начинается с единицы. Это значит, что индексы должны быть больше или равны единице.

Важно понять, что вектор, вектор-строка или матрица являются математическими объектами, а одномерные, двумерные или многомерные массивы — способы хранения этих объектов в компьютере. Всюду дальше будут использоваться слова вектор и матрица, если больший интерес представляет сам объект, чем способ его хранения. Вектор может быть записан в столбик (вектор-столбец) и в строку (вектор-строка). Вектор-столбцы и вектор-строки часто будут называться просто векторами, различие будет сделано в тех случаях, если важен способ хранения вектора в MatLab. Векторы и матрицы обозначаются курсивом, а соответствующие им массивы прямым моноширинным шрифтом, например: «вектор а содержится в массиве а», «запишите матрицу R в массив r».

Ввод сложение и вычитание векторов

Работу с массивами начнем с простого примера — вычисления суммы векторов:
, .

Для хранения векторов используйте массивы а и b. Введите массив а в командной строке, используя квадратные скобки и разделяя элементы вектора точкой с запятой:

» a = [1.3; 5.4; 6.9]
a =
1.3000
5.4000
6.9000

Так как введенное выражение не завершено точкой с запятой, то пакет MatLab автоматически вывел значение переменной а. Введите теперь второй вектор, подавив вывод на экран

Для нахождения суммы векторов используется знак +. Вычислите сумму, запишите результат в массив с и выведите его элементы в командное окно:

» с = а + b
с =
8.4000
8.9000
15.1000

Узнайте размерность и размер массива а при помощи встроенных функций ndims и size:

Итак, вектор а хранится в двумерном массиве а размерностью три на один (вектор-столбец из трех строк и одного столбца). Аналогичные операции можно проделать и для массивов b и c. Поскольку числа в пакете MatLab представляются в виде двумерного массива один на один, то при сложении векторов используется тот же знак плюс, что и для сложения чисел.

Ввод вектор-строки осуществляется в квадратных скобках, однако элементы следует разделять пробелами или запятыми. Операции сложения, вычитания и вычисление элементарных функций от вектор-строк производятся так же, как и с вектор-столбцами, в результате получается вектор-строка того же размера, что и исходные. Например:

» s1 = [3 4 9 2]
s1 =
3 4 9 2
» s2 = [5 3 3 2]
s1 =
5 3 3 2
» s3 = s1 + s2
s3 =
8 7 12 4

Замечание 1

Если размеры векторов, к которым применяется сложение или вычитание, не совпадают, то выдается сообщение об ошибке.

Естественно, для нахождения разности векторов следует применять знак минус, с умножением дело обстоит несколько сложнее.
Введите две вектор-строки:

» v1 = [2 -3 4 1];
» v2 = [7 5 -6 9];

Операция .* (не вставляйте пробел между точкой и звездочкой!) приводит к поэлементному умножению векторов одинаковой длины. В результате получается вектор с элементами, равными произведению соответствующих элементов исходных векторов:

» u = v1.*v2
u =
14 -15 -24 9

При помощи .^ осуществляется поэлементное возведение в степень:

» р = v1.^2
p =
4 9 16 1

Показателем степени может быть вектор той же длины, что и возводимый в степень. При этом каждый элемент первого вектора возводится в степень, равную соответствующему элементу второго вектора:

» p = vl.^v2
Р =
128.0000 -243.0000 0.0002 1.0000

Деление соответствующих элементов векторов одинаковой длины выполняется с использованием операции ./

» d = v1./v2
d =
0.2857 -0.6000 -0.6667 0.1111

Обратное поэлементное деление (деление элементов второго вектора на соответствующие элементы первого) осуществляется при помощи операции .

» dinv = vl.v2
dinv =
3.5000 -1.6667 -1.5000 9.0000

Итак, точка в MatLab используется не только для ввода десятичных дробей, но и для указания того, что деление или умножение массивов одинакового размера должно быть выполнено поэлементно.
К поэлементным относятся и операции с вектором и числом. Сложение вектора и числа не приводит к сообщению об ошибке. MatLab прибавляет число к каждому элементу вектора. То же самое справедливо и для вычитания:

» v = [4 6 8 10];
» s = v + 1.2
s =
5.2000 6.2000 9.2000 11.2000
» r = 1.2 — v
r =
-2.8000 -4.8000 -6.8000 -8.8000
» r1 = v — 1.2
r1 = 2.8000 4.8000 6.8000 8.8000

Умножать вектор на число можно как справа, так и слева:

Читать еще:  Hash hmac php

» v = [4 6 8 10];
» p = v*2
р =.
8 12 16 20
» pi = 2*v
pi =
8 12 16 20

Делить при помощи знака / можно вектор на число:

» р = v/2
p =
2 3 4 5

Попытка деления числа на вектор приводит к сообщению об ошибке:

» р = 2/v
. Error using ==> /
Matrix dimensions must agree.

Если требуется разделить число на каждый элемент вектора и записать результат в новый вектор, то следует использовать операцию ./

» w = [4 2 6];
» d = 12./w
d =
3 6 2

Все вышеописанные операции применимы как к вектор-строкам, так и к вектор-столбцам.
Особенность MatLab представлять все данные в виде массивов является очень удобной. Пусть, например, требуется вычислить значение функции sin сразу для всех элементов вектора с (который хранится в массиве с) и записать результат в вектор d. Для получения вектора d достаточно использовать один оператор присваивания:

» d = sin(с)
d =
0.8546
0.5010
0.5712

Итак, встроенные в MatLab элементарные функции приспосабливаются к виду аргументов; если аргумент является массивом, то результат функции будет массивом того же размера, но с элементами, равными значению функции от соответствующих элементов исходного массива. Убедитесь в этом еще на одном примере. Если необходимо найти квадратный корень из элементов вектора dсо знаком минус, то достаточно записать:

» sqrt(-d)
ans =
0 + 0.9244i
0 + 0.7078i
0 + 0.7558i

Оператор присваивания не использовался, поэтому пакет MatLab записал ответ в стандартную переменную ans.

Для определения длины вектор-столбцов или вектор-строк служит встроенная функция length:

Из нескольких вектор-столбцов можно составить один, используя квадратные скобки и разделяя исходные вектор-столбцы точкой с запятой:

Для сцепления вектор-строк также применяются квадратные скобки, но сцепляемые вектор-строки отделяются пробелами или запятыми:

» v1 = [1 2];
» v2 = [3 4 5];
» v = [v1 v2]
v =
1 2 3 4 5

Работа с элементами векторов

Доступ к элементам вектор-столбца или вектор-строки осуществляется при помощи индекса, заключаемого в круглые скобки после имени массива, в котором хранится вектор. Если среди переменных рабочей среды есть массив v, определенный вектор-строкой

» v = [1.3 3.6 7.4 8.2 0.9];

то для вывода, например его четвертого элемента, используется индексация:

Появление элемента массива в левой части оператора присваивания приводит к изменению в массиве

» v(2) = 555
v =
1.3000 555.0000 7.4000 8.2000 0.9000

Из элементов массива можно формировать новые массивы, например

» u = [v(3); v(2); v(1)]
u =
7.4000
555.0000
1.3000

Для помещения определенных элементов вектора в другой вектор в заданном порядке служит индексация при помощи вектора. Запись в массив w четвертого, второго и пятого элементов v производится следующим образом:

» ind = [4 2 5];
» w = v(ind)
w =
8.2000 555.0000 0.9000

MatLab предоставляет удобный способ обращения к блокам последовательно расположенных элементов вектор-столбца или вектор-строки. Для этого служит индексация при помощи знака двоеточия. Предположим, что в массиве w, соответствующем вектор-строке из семи элементов, требуется заменить нулями элементы со второго по шестой. Индексация при помощи двоеточия позволяет просто и наглядно решить поставленную задачу:

» w = [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» w(2:6) = 0;
» w
w =
0.1000 0 0 0 0 0 9.8000

Присваивание w(2:6) = 0 эквивалентно последовательности команд
w(2) = 0; w(3)=0; w(4)=0; w(5)=0; w(6)=0.
Индексация при помощи двоеточия оказывается удобной при выделении части из большого объема данных в новый массив:

» w — [0.1 2.9 3.3 5.1 2.6 7.1 9.8];
» wl = w(3:5)
wl =
3.3000 5.1000 2.6000

Составьте массив w2, содержащий элементы w кроме четвертого. В этом случае удобно использовать двоеточие и сцепление строк:

» w2 = [w(l:3) w(5:7)]
w2 =
0.1000 2.9000 3.3000 2.6000 7.1000 9.8000

Элементы массива могут входить в выражения. Нахождение, например среднего геометрического из элементов массива u, можно выполнить следующим образом:

Конечно, этот способ не очень удобен для длинных массивов. Для того чтобы найти среднее геометрическое, необходимо набрать в формуле все элементы массива. В MatLab существует достаточно много специальных функций, облегчающих подобные вычисления.

Применение функций обработки данных к векторам

Перемножение элементов вектора-столбца или вектора-строки осуществляется при помощи функции prod:

» z = [3; 2; 1; 4; 6; 5];
» р = prod(z)
p = 720

Функция sum предназначена для суммирования элементов вектора. С ее помощью нетрудно вычислить среднее арифметическое элементов вектора z:

» sum(z)/length(z)
ans =
3.5000

В MatLab имеется и специальная функция mean для вычисления среднего арифметического:

Для определения минимального и максимального из элементов вектора служат встроенные функции min и max:

» m1 = max(z)
m1 =
6
» m2 = min(z)
m2 =
1

Часто необходимо знать не только значение минимального или максимального элемента в массиве, но и его индекс (порядковый номер). В этом случае встроенные функции min и max необходимо использовать с двумя выходными аргументами, например

» [m, k] = min(z)
m =
1
k =
3

В результате переменной m будет присвоено значение минимального элемента массива z, а номер минимального элемента занесен в переменную k.
Для получения информации о различных способах использования функций следует набрать в командной строке help и имя функции. MatLab выведет в командное окно всевозможные способы обращения к функции с дополнительными пояснениями.
В число основных функций для работы с векторами входит функция упорядочения вектора по возрастанию его элементов sort.

» r = [9.4 -2.3 -5.2 7.1 0.8 1.3];
» R = sort(r)
R =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000

Можно упорядочить вектор по убыванию, используя эту же функцию sort:

» R1 = -sort(-r)
R1 =
9.4000 7.1000 1.3000 0.8000 -2.3000 -5.2000

Упорядочение элементов в порядке возрастания их модулей производится с привлечением функции abs:

» R2 = sort(abs(r))
R2 =
0.8000 1.3000 2.3000 5.2000 7.1000 9.4000

Вызов sort с двумя выходными аргументами приводит к образованию массива индексов соответствия элементов упорядоченного и исходного массивов:

» [rs, ind] = sort(r)
rs =
-5.2000 -2.3000 0.8000 1.3000 7.1000 9.4000
ind =
3 2 5 6 4 1

Matlab массив строк

В сложных вычислительных задачах (или просто при нежелании программировать на Lua, Cpp и т.д., а пользоваться более высокоуровневыми инструментами разработки), незаменимым оказывается API интерфейс Матлаба реализованный в качестве Active-X COM Automation Server. Для его реализации на языке Си существует специальная библиотека libeng.lib, позволяющая языкам Си, С++, Фортран обмениваться данными и пользоваться всеми ресурсами Матлаба (обычно это обработка видео, автопилоты, ИИ, нейронные сети и т.п.).

Поэтому, в качестве изучения возможностей, попробуем реализовать простейший проект обмена данными и вызова функций Матлаб со стороны Си++ при использовании CodeBlocks и MinGW64.

  • Запуск интерфейса Матлаб

Чтобы адресовать все внешние процессы к единому процессу Матлаб, а не запускать Engine для каждого процесса в отдельности,
запустим «двигатель» матлаба внутренней командой :

В этом случае используемые в Cи++ функции engOpen() будут получать указатель на уже существующий интерфейс, а не открывать новый.

  • Подключение необходимых библиотек и получение указателя интерфейса

Необходимый минимум :

1. Библиотека libeng.lib, отвечающая за управление интерфейсом Matlab (matlabroot)/extern/lib/win64/microsoft
2. Библиотека libmx.lib, отвечающая за конвертацию данных Matlab — Cpp (matlabroot)/extern/lib/win64/microsoft
3. Файл заголовок engine.h, описывающий доступные пользователю функции. (matlabroot)/extern/include/win64/microsoft

Указатель интерфейса получается вызовом функции ep=engOpen(NULL), с единственно допустимым параметром для Win OS — NULL.

  • Передача в Матлаб массива типа Double float,2p

Для того чтобы передать заданный массив размером 2х3 в Матлаб нам необходимо сначала создать некоторый матлаб-совместимый объект mxArray, указатель на который возвращает функция:

*mxCreateDoubleMatrix( число строк, число столбцов, флаг комплексного числа)

После чего, созданный объект заполняется при помощи функции:

memcpy( память назначения (первый элемент mxArray), память источник (массив Cи++), объем копирования памяти в байтах)

Полученный таким образом массив передается в Матлаб по стандартной процедуре:

engPutVariable( указатель процесса Матлаб, имя переменной в процессе Матлаб, передаваемая переменная из Си++)

  • Чтение ранее переданного Double float,2p массива из Матлаб

Чтение происходит аналогично, но в обратной последовательности.

  • Исполнение заданной Си++ функции в среде Матлаб

Функция для исполнения Матлаб задается строкой (массив char) и в данном случае представляет собой создание и заполнение 2х2 массива ячеек (Cell Array) строковыми переменными.

После того, как функция задана строкой, она исполняется командой:

engEvalString(указатель процесса Матлаб, команда матлаб заданная строкой)

  • Чтение массива ячеек из матлаб в цикле



Чтение массива ячеек аналогично чтению массива double за исключением того, что читать нам его приходится поэлементно в цикле, получая строки из ячеек при помощи функции :

строка из ячейки = mxArrayToString( указатель ячейки)

указатель ячейки = mxGetCell( указатель массива, указатель порядкового номера ячейки от 0 до последнего элемента массива)

* В ячейке Cell Array может содержаться не только строка, но и многомерный массив Double, и даже другой Cell Array, в ячейках которого содержаться иные массивы. В данном случае, предполагается использование только простых массивов строк.

int engOutputBuffer(Engine *ep, char *buffer, int buflen); — захват выходного буфера процесса Матлаб

int engSetVisible(Engine *ep, bool newVal); — изменение видимости окна процесса Матлаб

int engClose(Engine *ep); — закрытие указанного процесса Матлаб

Результаты работы программы:

Предложения и критика приветствуются.
Торгуйте алгоритмами.
С уважением, Кот-Бегемот.

Ссылка на основную публикацию
Adblock
detector