Elettracompany.com

Компьютерный справочник
4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Циклы в matlab

Условные операторы и циклы в MatLab

Условный оператор if

В самом простом случае синтаксис данного оператора if имеет вид:

Обращаю Ваше внимание что в отличие от современных языков программирования не используются такое понятие как составной оператор. Блок условного оператора обязательно заканчивается служебным словом end.

Ниже представлен пример реализации функции sign(), которая возвращает +1, если число больше нуля, -1 – если число меньше нуля и 0, если число равно нулю:

x = 5;
if x > 0
disp(1);
end
if x

if
% выполняются, если истинно условие
else
% выполняются, если условие ложно
end

Тогда приведенный выше пример можно записать следующим образом:

x = 5;
if x > 0
disp(1);
else
if x

Приведенный выше пример можно записать в более простой форме, используя еще одну конструкцию оператора if языка MatLab:

if
% выполняются, если истинно выражение1
elseif
% выполняются, если истинно выражение2
.
elseif
% выполняются, если истинно выражениеN
end

и записывается следующим образом:

x = 5;
if x > 0
disp(1); % выполняется, если x > 0
elseif x = 0 и x = 0 & x 2:

x = 1;
if x 2
disp(‘x не принадлежит диапазону от 0 до 2’);
else
disp(‘x принадлежит диапазону от 0 до 2’);
end

Используя логические операторы И, ИЛИ, НЕ, можно создавать разнообразные составные условия. Например, можно сделать проверку, что переменная x попадает в диапазон от -5 до 5, но не принадлежит диапазону от 0 до 1. Очевидно, это можно реализовать следующим образом:

Обратите внимание, что при сложном составном условии были использованы круглые скобки. Дело в том, что приоритет операции И выше приоритета операции ИЛИ, и если бы не было круглых скобок, то условие выглядело бы так: (x >= -5 и x 1. Очевидно, что такая проверка давала бы другой результат от ожидаемого.

Круглые скобки в программировании используются для изменения приоритетов выполнения операторов. Подобно арифметическим операторам, логические также могут быть изменены по желанию программиста. Благодаря использованию круглых скобок, сначала выполняется проверка внутри них, а, затем, за их пределами. Именно поэтому в приведенном выше примере они необходимы для достижения требуемого результата.

Приоритет логических операций следующий:

) – самый высокий приоритет;
И (&) – средний приоритет;
ИЛИ (|) – самый низкий приоритет.

Оператор цикла while

Язык программирования MatLab имеет два оператора цикла: while и for. С их помощью, например, выполняется программирование рекуррентных алгоритмов, подсчета суммы ряда, перебора элементов массива и многое другое.

В самом простом случае цикл в программе организуется с помощью оператора while, который имеет следующий синтаксис:

Здесь означает условное выражение подобное тому, которое применяется в операторе if, и цикл while работает до тех пор, пока это условие истинно.

Следует обратить внимание на то, что если условие будет ложным до начала выполнения цикла, то операторы, входящие в цикл, не будут выполнены ни разу.

Приведем пример работы цикла while для подсчета суммы ряда :

S = 0; % начальное значение суммы
i=1; % счетчик суммы
while i 20 % если S > 20,
break; % то цикл завершается
end
end % конец цикла
disp(S); % отображение суммы 21 на экране

В данном примере второе условие завершения цикла, когда S будет больше 20, записано в самом цикле и с помощью оператора break осуществляется выход из цикла на функцию disp(), стоящую сразу после цикла while.

Второй оператор управления выполнением цикла continue позволяет пропускать выполнение фрагмента программы, стоящий после него. Например, требуется подсчитать сумму элементов массива

a = [1 2 3 4 5 6 7 8 9];

исключая элемент с индексом 5. Такую программу можно записать следующим образом:

S = 0; % начальное значение суммы
a = [1 2 3 4 5 6 7 8 9]; % массив
i=0; % счетчик индексов массива
while i = : :

end

Рассмотрим работу данного цикла на примере реализации алгоритма поиска максимального значения элемента в векторе:

a = [3 6 5 3 6 9 5 3 1 0];
m = a(1); % текущее максимальное значение
for i=1:length(a) % цикл от 1 до конца вектора с
% шагом 1 (по умолчанию)
if m m,
m = a(i); % то m = a(i)
end
end % конец цикла for
disp(m);

В данном примере цикл for задает счетчик i и меняет его значение от 1 до 10 с шагом 1. Обратите внимание, что если величина шага не указывается явно, то он берется по умолчанию равным 1.

В следующем примере рассмотрим реализацию алгоритма смещения элементов вектора вправо, т.е. предпоследний элемент ставится на место последнего, следующий – на место предпоследнего, и т.д. до первого элемента:

a = [3 6 5 3 6 9 5 3 1 0];
disp(a);
for i=length(a):-1:2 % цикл от 10 до 2 с шагом -1
a(i)=a(i-1); % смещаем элементы вектора а
end % конец цикла for
disp(a);

Результат работы программы

3 6 5 3 6 9 5 3 1 0
3 3 6 5 3 6 9 5 3 1

Приведенный пример показывает, что для реализации цикла со счетчиком от большего значения к меньшему, нужно явно указывать шаг, в данном случае, -1. Если этого не сделать, то цикл сразу завершит свою работу и программа будет работать некорректно.

Циклы в matlab

2.4. Оператор цикла for

Часто при организации цикла требуется перебирать значение счетчика в заданном диапазоне значений и с заданным шагом изменения. Например, чтобы перебрать элементы вектора (массива), нужно организовать счетчик от 1 до N с шагом 1, где N – число элементов вектора. Чтобы вычислить сумму ряда, также задается счетчик от a до b с требуемым шагом изменения step. И так далее. В связи с тем, что подобные задачи часто встречаются в практике программирования, для их реализации был предложен свой оператор цикла for, который позволяет проще и нагляднее реализовывать цикл со счетчиком.

Синтаксис оператора цикла for имеет следующий вид:

Рассмотрим работу данного цикла на примере реализации алгоритма поиска максимального значения элемента в векторе:

function search_max
a = [3 6 5 3 6 9 5 3 1 0];
m = a(1); % текущее максимальное значение
for i=1:length(a) % цикл от 1 до конца вектора с
% шагом 1 (по умолчанию)
if m m,
m = a(i); % то m = a(i)
end
end % конец цикла for
disp(m);

В данном примере цикл for задает счетчик i и меняет его значение от 1 до 10 с шагом 1. Обратите внимание, что если величина шага не указывается явно, то он берется по умолчанию равным 1.

В следующем примере рассмотрим реализацию алгоритма смещения элементов вектора вправо, т.е. предпоследний элемент ставится на место последнего, следующий – на место предпоследнего, и т.д. до первого элемента:

function queue
a = [3 6 5 3 6 9 5 3 1 0];
disp(a);
for i=length(a):-1:2 % цикл от 10 до 2 с шагом -1
a(i)=a(i-1); % смещаем элементы вектора а
end % конец цикла for
disp(a);

Результат работы программы

3 6 5 3 6 9 5 3 1 0
3 3 6 5 3 6 9 5 3 1

Приведенный пример показывает, что для реализации цикла со счетчиком от большего значения к меньшему, нужно явно указывать шаг, в данном случае, -1. Если этого не сделать, то цикл сразу завершит свою работу и программа будет работать некорректно.

В заключении рассмотрим работу оператора цикла for на примере моделирования случайной последовательности с законом изменения

,

где — коэффициент от -1 до 1; — нормальная случайная величина с нулевым математическим ожиданием и дисперсией

,

где — дисперсия моделируемого случайного процесса. При этом первый отсчет моделируется как нормальная случайная величина с нулевым математическим ожиданием и дисперсией . Программа моделирования имеет следующий вид:

Читать еще:  Скачать пример web приложения на php

function modeling_x
r = 0.95; % коэффициент модели
N = 100; % число моделируемых точек
ex = 100; % дисперсия процесса
et = ex*(1-r^2); % дисперсия случайной добавки
x = zeros(N,1); % инициализация вектора х
x(1) = sqrt(ex)*randn; % моделирование 1-го отсчета
for i=2:N % цикл от 2 до N
x(i)=r*x(i-1)+sqrt(et)*randn; % моделирование СП
end % конец цикла
plot(x); % отображение СП в виде графика

При выполнении данной программы будет показана реализация смоделированной случайной последовательности .

Рис. 2.1. Результат моделирования случайной последовательности.

Работа программы начинается с определения переменных , (в программе переменная ex) и для реализации указанной модели. Затем вычисляется дисперсия и моделируется первый отсчет случайного процесса с помощью функции randn. Функция randn выполняет генерацию нормальных случайных величин с нулевым средним и единичной дисперсией. Чтобы сгенерировать случайную величину с дисперсией достаточно случайную величину с единичной дисперсией умножить на , т.к. дисперсия – это средний квадрат случайной величины относительно математического ожидания. В результате имеем программную строчку

Затем, реализуется цикл for со счетчиком i от 2 до N с шагом 1. Внутри цикла выполняется моделирование оставшихся N-1 отсчетов случайного процесса в соответствии с приведенной выше формулой. В последней строчке программы записана функция plot(), которая выводит смоделированную последовательность на экран в виде графика. Более подробно работа с выводом графиков на экран будет рассмотрена в следующей главе.

MatLab Руководство для начинающих. Matlab сокращение от англ. Matrix Laboratory

5.2. Оператор цикла while

Язык программирования MatLab имеет два оператора цикла: while и for. С их помощью, например, выполняется программирование рекуррентных алгоритмов, подсчета суммы ряда, перебора элементов массива и многое другое.

В самом простом случае цикл в программе организуется с помощью оператора while, который имеет следующий синтаксис:

Здесь означает условное выражение подобное тому, которое применяется в операторе if, и цикл while работает до тех пор, пока это условие истинно.

Следует обратить внимание на то, что если условие будет ложным до начала выполнения цикла, то операторы, входящие в цикл, не будут выполнены ни разу.

Приведем пример работы цикла while для подсчета суммы ряда :

S = 0; % начальное значение суммы
i=1; % счетчик суммы
while i 20 % если S > 20,
break; % то цикл завершается
end
end % конец цикла
disp(S); % отображение суммы 21 на экране

В данном примере второе условие завершения цикла, когда S будет больше 20, записано в самом цикле и с помощью оператора break осуществляется выход из цикла на функцию disp(), стоящую сразу после цикла while.

Второй оператор управления выполнением цикла continue позволяет пропускать выполнение фрагмента программы, стоящий после него. Например, требуется подсчитать сумму элементов массива

a = [1 2 3 4 5 6 7 8 9];

исключая элемент с индексом 5. Такую программу можно записать следующим образом:

S = 0; % начальное значение суммы
a = [1 2 3 4 5 6 7 8 9]; % массив
i=0; % счетчик индексов массива
while i = : :

end

Рассмотрим работу данного цикла на примере реализации алгоритма поиска максимального значения элемента в векторе:

a = [3 6 5 3 6 9 5 3 1 0];
m = a(1); % текущее максимальное значение
for i=1:length(a) % цикл от 1 до конца вектора с
% шагом 1 (по умолчанию)
if m m,
m = a(i); % то m = a(i)
end
end % конец цикла for
disp(m);

В данном примере цикл for задает счетчик i и меняет его значение от 1 до 10 с шагом 1. Обратите внимание, что если величина шага не указывается явно, то он берется по умолчанию равным 1.

В следующем примере рассмотрим реализацию алгоритма смещения элементов вектора вправо, т.е. предпоследний элемент ставится на место последнего, следующий – на место предпоследнего, и т.д. до первого элемента:

a = [3 6 5 3 6 9 5 3 1 0];
disp(a);
for i=length(a):-1:2 % цикл от 10 до 2 с шагом -1
a(i)=a(i-1); % смещаем элементы вектора а
end % конец цикла for
disp(a);

Результат работы программы

3 6 5 3 6 9 5 3 1 0
3 3 6 5 3 6 9 5 3 1

Приведенный пример показывает, что для реализации цикла со счетчиком от большего значения к меньшему, нужно явно указывать шаг, в данном случае, -1. Если этого не сделать, то цикл сразу завершит свою работу и программа будет работать некорректно.

6. Решения уравнения

6.1. Графический метод решения уравнений

Вывод на экран сразу нескольких графиков предоставляет простейший способ найти приблизительное значение решения.

На данном графике представлены графики функций y=sin(t)/t и (x/5) 2 +y 2 =1. Как не трудно заметить данные функции имеют три точки пересечения.

6.2. Поиск решения уравнения

Графическим методом можно лишь примерно оценить решение. Для более точного нахождения решения в пакете MatLAB необходимо воспользоваться функцией fsolve(уравнение, начальное значение). Позже мы познакомимся как с помощью данной функции решать системы уравнений. В простейшем случае решаемое уравнение можно указать можно указать в одинарных кавычках, например: ‘x*x-abs(x)’. Но данная функция имеет три решения, представленных на рис.

Решение, которое найдет в этом случае функция fsolve будет определяться начальным значением откуда она начнет итерационную процедуру поиска решения. Например:

fsolve(‘x*x-abs(x)’,-2), ans = -1.0000;

fsolve(‘x*x-abs(x)’,0.6), ans = 1.0000;

fsolve(‘x*x-abs(x)’,0.4), ans = 7.9062e-008.

Функция fsolve продолжает итерационную процедуру до тех пор пока она не найдет решение с заданной точностью. По этому в нашем примере мы и получили 7.9062e-008 а не 0.

В случае более сложных функций их удобнее представить в виде M файла. Тогда в качестве первого параметра функции fsolve подставляется в одинарных кавычках имя этого файла.

7. М-файлы

Работа из командной строки MatLab затрудняется, если требуется вводить много команд и часто их изменять. Ведение дневника при помощи команды diary и сохранение рабочей среды незначительно облегчают работу. Самым удобным способом выполнения групп команд MatLab является использование М-файлов, в которых можно набирать команды, выполнять их все сразу или частями, сохранять в файле и использовать в дальнейшем. Для работы с М-файлами предназначен редактор М-файлов. С его помощью можно создавать собственные функции и вызывать их, в том числе и из командного окна.

Раскройте меню File основного окна MatLab и в пункте New выберите подпункт M-file. Новый файл открывается в окне редактора M-файлов, которое изображено на рисунке.

М-файлы в MatLab бывают двух типов: файл-программы (Script M-Files), содержащие последовательность команд, и файл-функции, (Function M-Files), в которых описываются функции, определяемые пользователем.

7.2. Файл-программа

Наберите в редакторе команды, приводящие к построению двух графиков на одном графическом окне

Сохраните теперь файл с именем mydemo.m в подкаталоге work основного каталога MatLab, выбрав пункт Save as меню File редактора. Для запуска на выполнение всех команд, содержащихся в файле, следует выбрать пункт Run в меню Debug. На экране появится графическое окно Figure 1, содержащее графики функций.

Очень удобной возможностью, предоставляемой редактором М-файлов, является выполнение части команд. Закройте графическое окно Figure 1. Выделите при помощи мыши, удерживая левую кнопку, или клавишами со стрелками при нажатой клавише Shift, первые четыре команды и выполните их из пункта Text. Обратите внимание, что в графическое окно вывелся только один график, соответствующий выполненным: командам. Запомните, что для выполнения части команд их следует выделить и нажать клавишу F9.

Читать еще:  Функция file exists php

Отдельные блоки М-файла можно снабжать комментариями, которые пропускаются при выполнении, но удобны при работе с М-файлом. Комментарии начинаются со знака процента и автоматически выделяются зеленым цветом, например:

Открытие существующего М-файла производится при помощи пункта Open меню File рабочей среды, либо редактора М-файлов.

7.3. Файл-функция

М-функции являются M-файлами, которые допускают наличие входных и выходных аргументов. Они работают с переменными в пределах собственной рабочей области, отличной от рабочей области системы MATLAB.

Функция average — это достаточно простой M-файл, который вычисляет среднее значение элементов вектора:
function y = average (x)
% AVERAGE Среднее значение элементов вектора.
% AVERAGE(X), где X — вектор. Вычисляет среднее значение элементов вектора.
% Если входной аргумент не является вектором, генерируется ошибка.
[m,n] = size(x);
if (

Попробуйте ввести эти команды в M-файл, именуемый average.m. Функция average допускает единственный входной и единственный выходной аргументы. Для того чтобы вызвать функцию average, надо ввести следующие операторы:

Структура М-функции. M-функция состоит из:

  • строки определения функции;
  • первой строки комментария;
  • собственно комментария;
  • тела функции;
  • строчных комментариев;

Строка определения функции. Строка определения функции сообщает системе MATLAB, что файл является М-функцией, а также определяет список входных аргументов.

Пример
Строка определения функции average имеет вид:
function y = average(x)
Здесь:

  1. function — ключевое слово, определяющее М-функцию;
  2. y — выходной аргумент;
  3. average — имя функции;
  4. x — входной аргумент.

Каждая функция в системе MATLAB содержит строку определения функции, подобную приведенной.

Если функция имеет более одного выходного аргумента, список выходных аргументов помещается в квадратные скобки. Входные аргументы, если они присутствуют, помещаются в круглые скобки. Для отделения аргументов во входном и выходном списках применяются запятые.

function [x, y, z] = sphere(theta, phi, rho)

Имена входных переменных могут, но не обязаны совпадать с именами, указанными в строке определения функции.

Первая строка комментария . Для функции average первая строка комментария выглядит так:

% AVERAGE Среднее значение элементов вектора

Это — первая строка текста, которая появляется, когда пользователь набирает команду help . Кроме того, первая строка комментария выводится на экран по команде поиска lookfor. Поскольку эта строка содержит важную информацию об M-файле, она должна быть тщательно составлена.

Имена М-функций. В системе MATLAB на имена М-функций налагаются те же ограничения, что и на имена переменных — их длина не должна превышать 31 символа. Более точно, имя может быть и длиннее, но система MATLAB принимает во внимание только первые 31 символ. Имена М-функций должны начинаться с буквы; остальные символы могут быть любой комбинацией букв, цифр и подчеркиваний.

Имя файла, содержащего М-функцию, составляется из имени функции и расширения “.m”.

Глава 2. Условные операторы и циклы в MatLab

Вторым шагом создания полноценных программ на языке MatLab является изучение операторов ветвления и циклов. С их помощью можно реализовывать логику выполнения математических алгоритмов и создавать повторяющиеся (итерационные, рекуррентные) вычисления.

Условный оператор if

Для того чтобы иметь возможность реализовать логику в программе используются условные операторы. Умозрительно эти операторы можно представить в виде узловых пунктов, достигая которых программа делает выбор по какому из возможных направлений двигаться дальше. Например, требуется определить, содержит ли некоторая переменная arg положительное или отрицательное число и вывести соответствующее сообщение на экран. Для этого можно воспользоваться оператором if (если), который и выполняет подобные проверки.

В самом простом случае синтаксис данного оператора if имеет вид:

Если значение параметра «выражение» соответствует значению «истинно», то выполняется оператор, иначе он пропускается программой. Следует отметить, что «выражение» является условным выражением, в котором выполняется проверка некоторого условия. В табл. 2.1 представлены варианты простых логических выражений оператора if.

Таблица 2.1. Простые логические выражения

Ниже представлен пример реализации функции sign(), которая возвращает +1, если число больше нуля, -1 – если число меньше нуля и 0, если число равно нулю:

function my_sign
x = 5;
if x > 0
disp(1);
end
if x
% выполняются, если истинно условие
else
% выполняются, если условие ложно
end

Тогда приведенный выше пример можно записать следующим образом:

function my_sign
x = 5;
if x > 0
disp(1);
else
if x
% выполняются, если истинно выражение1
elseif
% выполняются, если истинно выражение2
.
elseif
% выполняются, если истинно выражениеN
end

и записывается следующим образом:

function my_sign
x = 5;
if x > 0
disp(1); % выполняется, если x > 0
elseif x = 0 и x = 0 & x 2:

function my_if
x = 1;
if x 2
disp(‘x не принадлежит диапазону от 0 до 2’);
else
disp(‘x принадлежит диапазону от 0 до 2’);
end

Используя логические операторы И, ИЛИ, НЕ, можно создавать разнообразные составные условия. Например, можно сделать проверку, что переменная x попадает в диапазон от -5 до 5, но не принадлежит диапазону от 0 до 1. Очевидно, это можно реализовать следующим образом:

Обратите внимание, что при сложном составном условии были использованы круглые скобки. Дело в том, что приоритет операции И выше приоритета операции ИЛИ, и если бы не было круглых скобок, то условие выглядело бы так: (x >= -5 и x 1. Очевидно, что такая проверка давала бы другой результат от ожидаемого.

Круглые скобки в программировании используются для изменения приоритетов выполнения операторов. Подобно арифметическим операторам, логические также могут быть изменены по желанию программиста. Благодаря использованию круглых скобок, сначала выполняется проверка внутри них, а, затем, за их пределами. Именно поэтому в приведенном выше примере они необходимы для достижения требуемого результата.

Приоритет логических операций следующий:

) – самый высокий приоритет;
И (&) – средний приоритет;
ИЛИ (|) – самый низкий приоритет.

Matlab

Материал из MachineLearning.

Matlab — язык программирования и система научных и инженерных расчетов, построенная на основе интерпретатора этого языка. Matlab, сокращение от «Matrix Laboratory», предназначен в первую очередь для выполнения алгоритмов, использующих векторы и матрицы.

Язык программирования Matlab (иногда также называется M-code) изначально был разработан с целью упрощения работы с процедурами широко распространенной в 70-80 годы библиотеки алгоритмов линейной алгебры LINPACK. Впоследствии он развился в мощный язык с богатым набором типов данных.

Оболочка Matlab состоит из командной строки, текстового редактора со встроенным отладчиком и окнами со списком файлов, списком видимых переменных и с историей введенных команд.

Matlab имеет большое число пакетов (toolboxes) — как собственных, так и распространяемых независимыми разработчиками часто на условиях открытого кода. В Matlab включен Simulink — визуальный редактор для моделирования динамических систем.

Содержание

Краткий обзор языка Matlab

Векторы и матрицы

добавть элемент к вектору-столбцу

добавить элемент в вектору-строке

текстовая строка — это вектор

Читать еще:  Hash hmac php

Операции

Типы данных

итератор может быть элементом вектора

или вектором-столбцом матрицы

Условный переход

оператор if использует как логические так и целочисленные переменные; можно использовать операции ‘and(a, b)’, синоним ‘a && b’ и ‘or(a, b)’, синоноим ‘a || b’

но удобнее использовать

Эффективное программирование

Matlab в своих базовых конструкциях сложнее C/C++, поэтому желательно смотреть чужой код с целью выявления удачных приемов.

Пример 1. Примечание: представленные в обзоре времена работы зависят от конкретного компьютера, системы, на которой он работает, загруженности компьютера в момент вычисления примера, числа свободных положительных зарядов на шерсти Вашего кота. Короче, много от чего. Поэтому если при запуске скрипта на Вашем компьютере времена работы не будут совпадать с тем, что вы видете в этом обзоре — не пугайтесь, это нормально и ожидаемо. Главная мысль состоит в том, что правильно написанный код на MATLAB начинает не только быстрее работать, но и (почти всегда) лучше выглядеть и читаться.

Игрушечный пример для иллюстрации способов работы с функциями и векторами в среде MATLAB

Получили вектор, компоненты которого — случайные числа, полученные из равномерного на отрезке [0,1] распределения. Теперь возьмем от каждого его элемента логарифм различными способами.

Способ первый — совсем плохой, самый медленный — в цикле наращивать размер вектора

Результат работы такой:

duration of the very bad method on 10000 elements Elapsed time is 0.286904 seconds.

Способ второй — заметно луче — заранее зарезервировать память под результат применения функции логарифма. Для наглядности увеличим размер вектора еще в 10 раз.

Результаты работы этого кода:

duration time of a bit improved method on 1000000 elements Elapsed time is 0.062692 seconds.

Способ третий — самый правильный и самый быстрый, работает мгновенно — взять функцию логарифма (то, что именно логарифма — не принципиально) сразу от вектора

duration of the best method on 1000000 elements Elapsed time is 0.015231 seconds.

Этот пример еще более игрушечный, чем предыдущий, но все же о нем тоже надо рассказать. MATLAB расшифровывается как matrix laboratiry, поэтому важно помнить, что MATLAB оптимизирован под вычисление произведений матрица на матрицу и матрица на стобец. Поэтому в MATLAB правильно писать операции над матрицами так, как это происходит при решении задач линейной алгебры.

То есть, если нам надо перемножить матрицы A и B, то не надо писать никаких циклов, а нужно просто написать C = A * B

Результат: Matrix multiplication time Elapsed time is 0.612797 seconds.

Здесь надо заметить, что при использовании > метода умножения матриц размеров n * n время получения ответа равно O(n^3). Если предположить, что компьютер делает в секунду в среднем 10^6 операций, то что-то тут не сходится — получится, что компьютер за 0.612797 секунд выполнил 8*10^9 операции. Дело в том, что в MATLAB реализован быстрый алгоритм умножения матриц, в этом алгоритме сложность менее, чем кубическая от размера входных матриц. Поэтому при перемножении матриц важно пользоваться именно записью C = A * B, а не ударяться в написание тройного цикла — тот уж точно выполнит все 8*10^9 операций и хорошо, если за пару суток управится.

Пример 3. Есть еще несколько функций, которые заточены под матричные и векторные операции — это функции repmat и reshape. Остановимся на них подробнее.

Важно. Практика показала, что repmat и reshape в разных версиях MATLAB могут отличаться, поэтому будьте внимательны и осторожны при их использовании.

Пусть мы хотим сделать матрицу, в которой все строки одинаковые. Тут возможны несколько способов реализации. Способ первый — цикл.

Elapsed time is 1.596466 seconds.

Способ второй — использовать функцию repmat()

Elapsed time is 0.311417 seconds.

Пусть теперь нам захотелось продублировать строки матрицы A, то есть вместо каждой строки матрицы написать две таких же строки, одну под другой. Как сделать это эффективно, то есть БЕЗ ЦИКЛОВ? Тут на помощь приходит функция reshape() (еще раз напоминаю про возможные различия в разных версиях).

Дальше ловкость рук и никакого мошенничества =)

Читателю предоставляется возможность разобраться с тем, как получилась матрица B, самостоятельно.

Скорее всего при первом прочтении предыдущий пример про дублирование строк кажется высосанным из пальца, поэтому продолжим и покажем, где в реальной жизни будет очень полезно использовать операции repmat и reshape, позволяющие не использовать циклы явно и ускорять операции в Matlab.

Пример 4, строим усеченную синусоиду, вариант 1

Пример 4, вариант 2

следует избегать циклов там, где можно использовать матричные операции;

пример 5, вариант 1

пример 5, вариант 2

Функции

функции бывают embedded, private, public, inline, см. doc; при написании желательно организовать код так, чтобы функция возвращала корректный результат независимо от того, что было подано в качестве аргумента — скаляр, вектор или матрица

пример, стандартизация вектора

функции могут включать варьируемое число входных и выходных аргументов

выполнение функций как текстовых строк в теле программы

пример, как сделать случайную k-индексную матрицу

инлайн-функции — функции задаваемые в теле программы

Мини-тест

Рекомендации программистам

  1. Matlab прост в освоении. Нет понятий проект, компилятор, библиотека.
  2. Есть командная строка, редактор m-code, path list и help.
  3. Если вы хотите использовать функцию из toolbox просто используйте ее имя в коде.
  4. Коллизий имен не существует. Старое имя исчезает при его перезагрузке.
  5. Функции вызываются по имени согласно path list (см. основное меню). Следите на очередностью в этом списке.
  6. Почитайте help, если вам нужно написать известный алгоритм, возможно он уже написан.
  7. В частности, функции, работающие с множествами: intersect, ismember, issorted, setdiff, setxor, union, unique и очень полезная функция is* находятся в Help navigator -> MATLAB -> Functions — Categorical list.
  8. Wikipedia.org содержит много библиотек для Matlab.
  9. Не нужно избегать сложных алгоритмов. Часто задачи классификации, регрессии, оптимизации решаются в одну строку кода.
  10. Желательно документировать свои функции так:
    • первая строка — назначение функции
    • вторая строка — имя функции и ее входные и выходные аргументы
    • варианты использования функции
    • пример использования функции
  11. Изучите все структуры данных в Matlab, их очень много. В последней версии (на момент написания основной части — R2008a) появилась поддержка работы с классами.
  12. Избегайте циклов, если возможно, используйте операции работы с матрицами.
  13. Имеется возможность подключать функции, написанные на C (в виде специально скомпилированных библиотек).

Некоммерческие версии

Matlab — коммерческая программа. Существуют некоммерческие варианты, совместимые по базовым конструкциям языка, но не совместимые по библиотечным функциям. Например, Scilab, Euler Math Toolbox и Octave.

События

Несколько раз в год фирма «Софтлайн» проводит семинары, посвященные новым версиям и отдельным подсистемам Matlab. Проводится Всероссийская научная конференция «Проектирование научных и инженерных приложений в среде MATLAB».

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector
×
×