Elettracompany.com

Компьютерный справочник
112 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Цвета в matlab

Цвета в matlab

3.2. Оформление графиков

Пакет MatLab позволяет отображать графики с разным цветом и типом линий, показывать или скрывать сетку на графике, выполнять подпись осей и графика в целом, создавать легенду и многое другое. В данном параграфе рассмотрим наиболее важные функции, позволяющие делать такие оформления на примере двумерных графиков.

Функция plot() позволяет менять цвет и тип отображаемой линии. Для этого, используются дополнительные параметры, которые записываются следующим образом:

Обратите внимание, что третий параметр записывается в апострофах и имеет обозначения, приведенные в таблицах 3.1-3.3. Маркеры, указанные ниже записываются подряд друг за другом, например,

‘ko’ – на графике отображает черными кружками точки графика,
‘ko-‘ – рисует график черной линией и проставляет точки в виде кружков.

Табл. 3.1. Обозначение цвета линии графика

Табл. 3.2. Обозначение типа линии графика

Табл. 3.3. Обозначение типа точек графика

Ниже показаны примеры записи функции plot() с разным набором маркеров.

x = 0:0.1:2*pi;
y = sin(x);

subplot(2,2,1); plot(x,y,’r-‘);
subplot(2,2,2); plot(x,y,’r-‘,x,y,’ko’);
subplot(2,2,3); plot(y,’b—‘);
subplot(2,2,4); plot(y,’b—+’);

Результат работы фрагмента программы приведен на рис. 3.7. Представленный пример показывает, каким образом можно комбинировать маркеры для достижения требуемого результата. А на рис. 3.7 наглядно видно к каким визуальным эффектам приводят разные маркеры, используемые в программе. Следует особо отметить, что в четвертой строчке программы по сути отображаются два графика: первый рисуется красным цветом и непрерывной линией, а второй черными кружками заданных точек графика. Остальные варианты записи маркеров очевидны.

Рис. 3.7. Примеры отображения графиков с разными типами маркеров

Из примеров рис. 3.7 видно, что масштаб графиков по оси Ox несколько больше реальных значений. Дело в том, что система MatLab автоматически масштабирует систему координат для полного представления данных. Однако такая автоматическая настройка не всегда может удовлетворять интересам пользователя. Иногда требуется выделить отдельный фрагмент графика и только его показать целиком. Для этого используется функция axis() языка MatLab, которая имеет следующий синтаксис:

axis( [ xmin, xmax, ymin, ymax ] ),

где название указанных параметров говорят сами за себя.

Воспользуемся данной функцией для отображения графика функции синуса в пределах от 0 до :

x = 0:0.1:2*pi;
y = sin(x);

subplot(1,2,1);
plot(x,y);
axis([0 2*pi -1 1]);

subplot(1,2,2);
plot(x,y);
axis([0 pi 0 1]);

Из результата работы программы (рис. 3.8) видно, что несмотря на то, что функция синуса задана в диапазоне от 0 до , с помощью функции axis() можно отобразить как весь график, так и его фрагмент в пределах от 0 до .

Рис. 3.8. Пример работы функции axis()

В заключении данного параграфа рассмотрим возможности создания подписей графиков, осей и отображения сетки на графике. Для этого используются функции языка MatLab, перечисленные в табл. 3.4.

Цвета в matlab

2. Оформление графиков функций.

Сейчас рассмотрим ряд вопросов, связанных с внешним видом графиков функций — цветом и стилем линий, которым проведены сами графики, а также различными надписями в пределах графического окна.

Например, следущие команды

x = 0 : 0.1 : 3; y = sin( x );

plot( x, y, ‘r-‘, x, y, ‘ko’ )

позволяют придать графику вид красной сплошной линии, на которой в дискретных

вычисляемых точках проставляются чёрные окружности. Здесь функция plot дважды строит график одной и той же функции, но в двух разных стилях. Первый из этих стилей отмечен как ‘r-‘, что означает проведение линии красным цветом (буква r), а штрих означает проведение сплошной линии. Второй стиль, помеченный как ‘ko’ означает проведение чёрным цветом (буква k) окружностей (буква o) на месте вычисляемых точек.

В общем случае, функция

plot( x1, y1, s1, x2, y2, s2, )

позволяет объединить несколько графиков функций y1(x1), y2(x2), , проведя их со стилями s1, s2,

В случае функции вида

plot( x1, y1, s1, x1, y1, s2 )

мы можем провести линию графика единственной функции y1(x1) одним цветом, а точки на нём (вычисляемые точки) — другим цветом.

Стили s1, s2, задаются в виде набора трёх символьных маркеров, заключенных в одиночные кавычки. Первый (не обязательно по порядку) из этих маркеров задаёт тип линии:

Второй маркер задаёт цвет:

Последний маркер задаёт тип проставляемых «точек»:

Можно указывать не все три маркера. Тогда используются необходимые маркеры, установленные «по умолчанию». Порядок, в котором указываются маркеры, не является существенным, то есть ‘r+-‘ и ‘-+r’ приводят к одинаковому результату.

Если в строке стиля поставить маркер типа точки, но не проставить маркер на тип линии, то тогда отображаются только вычисляемые точки, а непрерывной линией они не соединяются.

Наиболее мощным способом оформления графиков функций (и выполнения других графических работ) является дескрипторный метод, полное изучение которого относится к так называемой низкоуровневой графике системы MATLAB и выходит за рамки настоящего пособия. Мы, однако, приведём сейчас (и позже) некоторые простые примеры.

Выше мы оформляли график функции sin с помощью непрерывной красной линии и чёрных кружков. Теперь попробуем ограничиться лишь непрерывной линией, но очень толстой. Как это можно сделать? Вот простое решение на базе дескрипторной графики:

x = 0 : 0.1 : 3; y = sin( x );

hPlot = plot( x, y );

set( hPlot, ‘LineWidth’, 7 );

Функция plot через опорные (вычисленные) точки с координатами x, y проводит отрезки прямых линий. Прямые линии в системе MATLAB представляют собой графические объекты типа Line. Эти объекты имеют огромное число свойств и характеристик, которые можно менять. Доступ к этим объектам осуществляется по их описателям (дескрипторам; handles).

Описатель объекта Line, использованного для построения нашего графика, возвращается функцией plot. Мы его запоминаем для дальнейшего использования в переменной hPlot. Затем этот описатель предлагается функции set для опознания конкретного графического объекта. Именно для такого опознанного объекта функция set изменяет характеристики, которые указаны в других аргументах при вызове функции set. В нашем примере мы указали свойство ‘LineWidth’ (толщина линии), для которого задали новое значение 7 (а по умолчанию — 0.5). В результате получается следующая картина:

Читать еще:  Productinfo php id c

Текущее значение любого параметра (атрибута; характеристики) графического объекта можно узнать с помощью функции get. Например, если после получения показанного на рисунке графика ввести и исполнить команду

width = get( hPlot, ‘LineWidth’ )

то для переменной width будет получено значение 7.

Теперь от оформления непосредственно линий перейдём к оформлению осей системы координат, к надписям на осях и так далее. MATLAB выбирает пределы на горизонтальной оси равными указанным для независимой переменной. Для зависимой переменной по вертикальной оси MATLAB вычисляет диапазон изменения значений функции. Затем этот вычисленный диапазон приписывается вертикальной оси системы координат, так что график функции оказывается как бы вписанным в прямоугольник.

Если мы хотим отказаться от этой особенности масштабирования при построении графиков в системе MATLAB, то мы должны явным образом навязать свои пределы изменения переменных по осям координат. Это делается с помощью функции

axis( [ xmin, xmax, ymin, ymax ] )

причём команду на выполнение этой функции можно вводить с клавиатуры сколько угодно раз уже после построения графика функции, чтобы, глядя на получающиеся визуальные изображения, добиться наилучшего восприятия. Такое масштабирование позволяет получить подробные изображения тех частей графика, которые вызывают наибольший интерес в конкретном исследовании. Например, для ранее полученного графика функции sin, можно сузить пределы по осям координат

axis( [ 1.5, 2.5, 0.5, 2 ] )

чтобы получше разглядеть вершину синусоиды:

Чаще всего этот приём увеличения масштаба изображения применяют при графическом решении уравнений с тем, чтобы получить более высокую точность приближения к корню.

Теперь изменим количество числовых отметок на осях. Их может показаться недостаточно (на горизонтальной оси последнего рисунка их всего три — для значений 1.5 , 2 и 2.5).

Изменить отметки на осях координат можно с помощью функции set, обрабатывающей графический объект Axes. Это объект, который содержит оси координат и белый прямоугольник, внутри которого и проводится сам график функции. Для получения описателя такого объекта применяют функцию gca, которую вызывают без параметров.

В итоге, следующий фрагмент кода

hAxes = gca;

set( hAxes, ‘xtick’, [ 1.5, 1.75, 2.0, 2.25, 2.5 ] )

выполняющийся после построения графика, устанавливает новые метки на горизонтальной оси координат (пять штук).

Для проставления различных надписей на полученном рисунке применяют функции xlabel, ylabel, title и text. Функция xlabel предназначена для проставления названия горизонтальной оси, функция ylabel — то же для вертикальной оси (причём эти надписи ориентированы вдоль осей координат).

Если требуется разместить надпись в произвольном месте рисунка — применяем функцию text:

text( x, y, ‘some text’)

Общий заголовок для графика проставляется функцией title. Кроме того, используя команду

grid on

можно нанести измерительную сетку на всю область построения графика. Применяя все эти средства

title( ‘Function sin(x) graph’ );

xlabel( ‘x coordinate’ ); ylabel( ‘sin(x)’ );

text( 2.1, 0.9, ‘leftarrowsin(x)’ ); grid on;

придаём графику функции следующий вид:

Надпись функцией text помещается, начиная от точки с координатами, указанными первыми двумя аргументами. Специальные символы вводятся внутри текста после символа («обратная косая черта»). В примере мы ввели таким образом специальный символ «стрелка влево». Обозначения для специальных символов совпадают с таковыми в системе подготовки научных текстов TeX.

MATLAB | Дополняйте цвета в изображении RGB

В MATLAB изображение RGB в основном представляет собой массив трехмерных изображений (M * N * 3) цветного пикселя, где каждый цветовой пиксель связан с тремя значениями, которые соответствуют компоненту красного, синего и зеленого цвета изображения RGB в указанном пространственное расположение.

В дополнение к цветам изображения RGB, каждый цвет в изображении RGB заменяется своим дополнительным цветом.

For example,
red color ( 255, 0, 0) is replaced with cyan color ( 0, 255, 255 ).
blue color ( 0, 0, 255 ) is replaced with yellow color ( 255, 255, 0).

here, cyan is complementary color for red and yellow are complementary color for blue.

Темные области становятся светлее, а светлые области становятся темнее на изображении RGB в результате дополнения.

Дополнение цветов изображения RGB с помощью функции библиотеки MATLAB:

% читают RGB-изображение в среде MATLAB

% дополняют цвета считываемого изображения RGB
% с использованием функции imcomplement ()
comp=imcomplement(img);

% Отображения дополненного изображения
imshow(comp);

Дополняющие цвета изображения RGB без использования библиотечных функций:

Дополните изображение RGB, вычитая значение каждого пикселя из максимального значения пикселя, поддерживаемого классом изображения RGB, и разность используется в качестве значения пикселя в дополненном изображении RGB.

Если изображение RGB принадлежит классу ‘uint8’, каждый пиксель будет иметь значения в диапазоне [0 — 255]. Таким образом, для максимального значения типа класса ‘uint8 пиксель может иметь значение 255. Если изображение RGB принадлежит классу’ uint16 ‘, каждый пиксель будет иметь значения в диапазоне [0 — 65535]. Таким образом, для максимального значения типа класса «uint16» пиксель может иметь значение 65535. Аналогично, максимально возможное значение пикселя в RGB-изображении типа «double» равно 1,0.

Например, пусть RGB-изображение класса ‘uint8’
Если пиксель изображения имеет значение 127, то в дополненном RGB-изображении этот же пиксель будет иметь значение (255–127) = 128.
Если пиксель изображения RGB имеет значение 255, то в дополненном изображении RGB этот же пиксель будет иметь значение (255 — 255) = 0.

Ниже приведена реализация вышеуказанной идеи.

% Эта функция будет принимать изображение RGB в качестве входных данных
% и дополнит цвета в нем

function [complement] = complementRGB(img)

% определить количество строк, столбец

% и размер во входном изображении

% преобразовать класс изображения RGB в ‘uint8’

% создать массив изображений класса ‘uint8’, имеющий

% одинаковое количество строк и столбцов и имеющие

% одинакового размера, все элементы равны нулю.

complement = zeros(x, y, z, ‘uint8’ );

Цикл% для вычитания значения каждого пикселя из 255

% скопировать разницу в дополнение к массиву изображений

complement(i, j, k)=255-img(i, j, k);

% читают RGB-изображение в среде MATLAB

% call обходить функцию RGB () в
% дополняют цвета в считанном изображении RGB
comp=complementRGB(img);

% Отображения дополненного изображения RGB
imshow(comp);

Читать еще:  Разработка веб приложений с помощью php

Альтернативный способ:

В MATLAB массивы являются базовой структурой данных. Им можно манипулировать очень легко. Например Array = 255 — Array ;
Приведенный выше код вычтет каждый элемент массива из 255. Массив может иметь любое количество измерений. Таким образом, вместо использования трех циклов вычитать 255 для каждого пикселя изображения RGB. Мы можем прямо написать это как comp=255 — img
Здесь ‘img’ — это трехмерный массив, представляющий наше изображение RGB.

Ниже код также дополнит RGB-изображение:

% читают RGB-изображение в среде MATLAB

% преобразовать класс изображения RGB в ‘uint8’
img=im2uint8(img);

% дополняют каждый пиксель, вычитая его из 255.
comp=255-img;

% Отображения дополненного изображения RGB
imshow(comp);

Входные данные :

Выход:

Colors in MATLAB plots

L. Oberbroeckling, Spring 2018.

Contents

This document gives BASIC ways to color graphs in MATLAB. See

for more in-depth explanations and fancier coloring, to name just two sources.

Default Colors in 2D Graphs

The default colors used in MATLAB changed in R2014b version. Here are the colors, in order, and their MATLAB RGB triplet.

Another thing that changed starting in the R2014b version is that the hold on and hold off automatically cycles through the colors. In the past, each new plot command would start with the first color (blue) and you would have to manually change the color. Now it will automatically move to the next color(s). See below for how to manually adjust the colors.

Default Colors in 3D Graphs

If using mesh(x,y,z), to change the look of it you would want to change 'EdgeColor'. Note that the name of this colormap is «parula» while previous to R2014b, it was «jet»

Using Basic Colors in Graphs

The eight basic colors are known by either their short name or long name (RGB triplets are also included).

Example of how to change the color using short names is below. You can easily do the same thing using the long names.

Changing Colors

Many times you want to have more control of what colors are used. For example, I may want some data points drawn in the same color as the curve. Or I have a piece-wise graph that I want to have all the same color. There are several ways to do this. One is to use the default colors and «resetting» the order, which is shown here. Others involve using the RGB triplet (see next section).

As you may see, this could get confusing to keep track of. Thus it may be easier to use the RGB triplets, and even name them ahead of time. This is discussed in the section below.

Using RGB triplets to change colors

One can specify colors using a vector that gives the RGB triple where in MATLAB, each of the three values are numbers from 0 to 1. Usually RGB colors have values from 0 to 255. You can use those numbers and divide the vector by 255 to use within MATLAB. Thus knowing the MATLAB RGB triples for the colors can be useful. From the table above, we can define the default colors to work with them or can put in the RGB triplet (as a vector) directly into the plot command. Both are shown in this example.

For other colors, you can look up their RGB code on many websites such as RGB Color Codes Chart or HTML Color Picker to see the RGB codes (or hex codes, etc.) For example, at these RGB Color websites, you will be given R=255, G=0, B=0 for red. So you can use 1/255[255,0,0] to get the color of red to use as a color in MATLAB.

The official color for Loyola Green is given as RGB:0-104-87, and Loyola Gray is given as RGB:200-200-200 (found on Loyola’s Logos/University Signature page. Here’s how one can use those colors in MATLAB.

Now one can use these colors to specify the color of markers, lines, edges, faces, etc.

Changing colors in 3D Graphs

If using mesh(x,y,z), to change the look of it you can change to a different colormap as discussed in https://www.mathworks.com/help/matlab/ref/colormap.html. This was done above when showing the previous default colormap. Here are some more.

Warning! Once you change the colormap, it will keep that colormap for all subsequent 3D plots within the same figure or MATLAB session until you use close, or open a new figure window.

For mesh and surf, you can change 'EdgeColor' and/or 'FaceColor' to be uniform, rather than using colormaps.

Глава 3. Работа с графиками в MatLab

MatLab предоставляет богатый инструментарий по визуализации данных. Используя внутренний язык, можно выводить двумерные и трехмерные графики в декартовых и полярных координатах, выполнять отображение изображений с разной глубиной цвета и разными цветовыми картами, создавать простую анимацию результатов моделирования в процессе вычислений и многое другое.

Функция plot

Рассмотрение возможностей MatLab по визуализации данных начнем с двумерных графиков, которые обычно строятся с помощью функции plot(). Множество вариантов работы данной функции лучше всего рассмотреть на конкретных примерах.

Предположим, что требуется вывести график функции синуса в диапазоне от 0 до . Для этого зададим вектор (множество) точек по оси Ox, в которых будут отображаться значения функции синуса:

В результате получится вектор столбец со множеством значений от 0 до и с шагом 0,01. Затем, вычислим множество значений функции синуса в этих точках:

и выведем результат на экран

В результате получим график, представленный на рис. 3.1.

Представленная запись функции plot() показывает, что сначала записывается аргумент со множеством точек оси Ох, а затем, аргумент со множеством точек оси Oy. Зная эти значения, функция plot() имеет возможность построить точки на плоскости и линейно их интерполировать для придания непрерывного вида графика.

Читать еще:  Php как fastcgi

Рис. 3.1. Отображение функции синуса с помощью функции plot().

Функцию plot() можно записать и с одним аргументом x или y:

в результате получим два разных графика, представленные на рис. 3.2.

Анализ рис. 3.2 показывает, что в случае одного аргумента функция plot() отображает множество точек по оси Oy, а по оси Оx происходит автоматическая генерация множества точек с единичным шагом. Следовательно, для простой визуализации вектора в виде двумерного графика достаточно воспользоваться функцией plot() с одним аргументом.

Для построения нескольких графиков в одних и тех же координатных осях, функция plot() записывается следующим образом:

x = 0:0.01:pi;
y1 = sin(x);
y2 = cos(x);
plot(x,y1,x,y2);

Результат работы данного фрагмента программы представлен на рис. 3.3.

Рис. 3.2. Результаты работы функции plot() с одним аргументом:

а – plot(x); б – plot(y).

Рис. 3.3. Отображение двух графиков в одних координатных осях.

Аналогичным образом можно построить два графика, используя один аргумент функции plot(). Предположим, что есть два вектора значений

y1 = sin(x);
y2 = cos(x);

которые требуется отобразить на экране. Для этого объединим их в двумерную матрицу

в которой столбцы составлены из векторов y1 и y2 соответственно. Такая матрица будет отображена функцией

plot([y1’ y2’]); % апострофы переводят вектор-строку
% в вектор-столбец

в виде двух графиков (рис. 3.4).

Рис. 3.4. Отображение двумерной матрицы в виде двух графиков.

Два вектора в одних осях можно отобразить только в том случае, если их размерности совпадают. Когда же выполняется работа с векторами разных размерностей, то они либо должны быть приведены друг к другу по числу элементов, либо отображены на разных графиках. Отобразить графики в разных координатных осях можно несколькими способами. В самом простом случае можно создать два графических окна и в них отобразить нужные графики. Это делается следующим образом:

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

plot(x1, y1); % рисование первого графика
figure; % создание 2-го графического окна
plot(x2, y2); % рисование 2-го графика во 2-м окне

Функция figure, используемая в данной программе, создает новое графическое окно и делает его активным. Функция plot(), вызываемая сразу после функции figure, отобразит график в текущем активном графическом окне. В результате на экране будут показаны два окна с двумя графиками.

Неудобство работы приведенного фрагмента программы заключается в том, что повторный вызов функции figure отобразит на экране еще одно новое окно и если программа будет выполнена дважды, то на экране окажется три графических окна, но только в двух из них будут актуальные данные. В этом случае было бы лучше построить программу так, чтобы на экране всегда отображалось два окна с нужными графиками. Этого можно достичь, если при вызове функции figure в качестве аргумента указывать номер графического окна, которое необходимо создать или сделать активным, если оно уже создано. Таким образом, вышеприведенную программу можно записать так.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1); %создание окна с номером 1
plot(x1, y1); % рисование первого графика
figure(2); % создание графического окна с номером 2
plot(x2, y2); % рисование 2-го графика во 2-м окне

При выполнении данной программы на экране всегда будут отображены только два графических окна с номерами 1 и 2, и в них показаны графики функций синуса и косинуса соответственно.

В некоторых случаях большего удобства представления информации можно достичь, отображая два графика в одном графическом окне. Это достигается путем использования функции subplot(), имеющая следующий синтаксис:

Рассмотрим пример отображения двух графиков друг под другом вышеприведенных функций синуса и косинуса.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

x2 = 0:0.01:pi;
y2 = cos(x2);

figure(1);
subplot(2,1,1); % делим окно на 2 строки и один столбец
plot(x1,y1); % отображение первого графика
subplot(2,1,2); % строим 2-ю координатную ось
plot(x2,y2); % отображаем 2-й график в новых осях

Результат работы программы показан на рис. 3.5.

Аналогичным образом можно выводить два и более графиков в столбец, в виде таблицы и т.п. Кроме того, можно указывать точные координаты расположения графика в графическом окне. Для этого используется параметр position в функции subplot():

subplot(‘position’, [left bottom width height]);

где left – смещение от левой стороны окна; bottom – смещение от нижней стороны окна; width, height – ширина и высота графика в окне. Все эти переменные изменяются в пределах от 0 до 1.

Рис. 3.5. Пример работы функции subplot.

Ниже представлен фрагмент программы отображения графика функции синуса в центре графического окна. Результат работы показан на рис. 3.6.

x1 = 0:0.01:2*pi;
y1 = sin(x1);

subplot(‘position’, [0.33 0.33 0.33 0.33]);
plot(x1,y1);

В данном примере функция subplot() смещает график на треть от левой и нижней границ окна и рисует график с шириной и высотой в треть графического окна. В результате, получается эффект рисования функции синуса по центру основного окна.

Таким образом, используя параметр position можно произвольно размещать графические элементы в плоскости окна.

Рис. 3.6. Пример работы функции subplot с параметром position.

Оформление графиков

Пакет MatLab позволяет отображать графики с разным цветом и типом линий, показывать или скрывать сетку на графике, выполнять подпись осей и графика в целом, создавать легенду и многое другое. В данном параграфе рассмотрим наиболее важные функции, позволяющие делать такие оформления на примере двумерных графиков.

Функция plot() позволяет менять цвет и тип отображаемой линии. Для этого, используются дополнительные параметры, которые записываются следующим образом:

Обратите внимание, что третий параметр записывается в апострофах и имеет обозначения, приведенные в таблицах 3.1-3.3. Маркеры, указанные ниже записываются подряд друг за другом, например,

‘ko’ – на графике отображает черными кружками точки графика,
‘ko-‘ – рисует график черной линией и проставляет точки в виде кружков.

Ссылка на основную публикацию
ВсеИнструменты 220 Вольт
Adblock
detector