Elettracompany.com

Компьютерный справочник
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от инфракрасного теплового излучения

ЗАЩИТА ОТ ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ

ВОЗДЕЙСТВИЕ ЛАЗЕРНЫХ ИЗЛУЧЕНИЙ НА ОРГАНИЗМ ЧЕЛОВЕКА И ЗАЩИТА ОТ НИХ

Для выбора средств защиты следует учитывать класс степени опасности лазера:

—класс I (безопасные) — выходное излучение не представляет опасности для глаз и кожи;

—класс II (малоопасные) — выходное излучение представляет опасность для глаз прямым и зеркально отраженным излучением;

—класс III (опасные) — опасно для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от диф­фузно отражающей поверхности и для кожи прямое и зеркально от­раженное облучение;

—класс IV (высокоопасные) — опасно для кожи диффузно отра­женное излучение на расстоянии 10 см от отражающей поверхности.

Наиболее эффективным методом защиты от ЛИ является экра­нирование. На открытых площадках обозначаются опасные зоны и устанавливаются экраны, предотвращающие распространение излу­чений за пределы зон.

Непрозрачные экраны изготовляются из металлических листов (стали, дюралюминия и др.), гетинакса, пластика, текстолита, пластмасс.

Прозрачные экраны из специальных стекол светофильтров или неорганического стекла со спектральной характеристикой, соответст­вующей длине волны излучения лазера.

Приведение лазера в рабочее состояние обычно блокируется с установкой защитного устройства.

Работы с лазерными установками проводятся в отдельных поме­щениях или специально отгороженных частях помещения. Коэффици­ент естественной освещенности в таких помещениях должен быть не

менее 1,5%, а общее искусственное освещение не менее 150 лк. Само по­мещение изнутри, оборудование и другие предметы не должны иметь зеркально отражающих поверхностей, если на них может падать пря­мой или отраженный луч лазера. При эксплуатации импульсных ла­зеров с высокой энергией излучения должно применяться дистанци­онное управление.

Средства индивидуальной защиты применяются при недоста­точности средств коллективной защиты. К СИЗ относятся технологи­ческие халаты, перчатки (для защиты кожных покровов), специаль­ные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, светло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стекла­ми специальных марок, обеспечивающими защиту от лазерного излу­чения определенных диапазонов длин волн.

Для защиты от теплового излучения применяются средства кол­лективной и индивидуальной защиты.

Основными методами коллективной защиты являются: тепло­изоляция рабочих поверхностей источников излучения теплоты, эк­ранирование источников или рабочих мест, воздушное душирование рабочих мест, мелкодисперсное распыление воды с созданием водя­ных завес, общеобменная вентиляция, кондиционирование.

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,14 Вт/м 2 , темпе­ратуру поверхности оборудования не более 35 °С при температуре внутри источника теплоты до 100 °С и 45 °С при температуре внутри источника теплоты более 100 °С.

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизо­ляции применяют материалы с низкой теплопроводностью.

Конструктивно теплоизоляция может быть мастичной, оберточ­ной, засыпной, из штучных изделий и комбинированной.

Мастичную изоляцию осуществляют путем нанесения на по­верхность изолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материа­лов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов.

Засыпная изоляция (например, керамзит) в основном использу­ется при прокладке трубопроводов в каналах и коробах.

Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляци­онных работ.

Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои — из мастичных и оберточных материалов.

Теплозащитные экраны применяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения темпе­ратуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энер­гию. Различают теплоотражающие, теплопоглощающие и теплоотво­дящие экраны. По конструктивному выполнению экраны подразде­ляются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закреп­ленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих мате­риалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрач­ных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверх­ности экрана не более 30. 35 °С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала.

В качестве полупрозрачных теплопоглощающих экранов ис­пользуют металлические сетки с размером ячейки З. 3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие эк­раны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Прозрачные экраны изготовляют из бесцветных или окрашен­ных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотво­дящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.

Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, соз­даваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

Средства индивидуальной защиты. Применяется теплозащит­ная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тон­кий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащит­ными свойствами.

Защита от инфракрасного излучения

Для защиты от теплового излучения применяются средства коллективной и индивидуальной защиты. Основными методами коллективной защиты являются: * теплоизоляция рабочих поверхностей источников излучения теплоты. Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне. Для теплоизоляции применяют материалы с низкой теплопроводностью. Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной. Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики. Оберточная изоляция изготавливается из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов. Засыпная изоляция (например, керамзит) в основном используется при про-кладке трубопроводов в каналах и коробах. Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ. Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие слои — из мастичных и оберточных материалов;

· экранирование источников или рабочих мест. Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Читать еще:  Защитный диод принцип работы

Непрозрачные экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим по-крытием. В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты. Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30…35°С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3…3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет, используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы. Прозрачные экраны изготавливают из бесцветных или окрашенных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотводящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и вододисперсных завес.;

· воздушное душирование рабочих мест ;

· использование водяных завес;

· использование устройств кондиционирования. Кондиционирование воздуха — создание и автоматическое поддержание в закрытых помещениях температуры, влажности, чистоты, скорости движения воздуха в заданных пределах. Его применяют для достижения наиболее комфортных санитарно-гигиенических условий в рабочей зоне или в производственно-технологических целях для поддержания требуемых параметров микроклимата с помощью кондиционеров.

Кондиционеры бывают центральные (на несколько помещений) и местные (на одно помещение), производственные и бытовые;

· использование вентиляционных систем и установок . К организационным относятся мероприятия по защите «временем». Во избежание чрезмерного (опасного) общего перегревания и локального повреждения (ожог) человека должна быть регламентирована продолжительность периодов непрерывного инфракрасного облучения и пауз между ними

· использование средств индивидуальной защиты.

К ним относятся:

o одежда специальная для защиты от повышенных температур (перегрева, брызг и искр расплавленного металла) В спецодежде этого класса используют материалы, способные определенное время удерживать брызги и искры металла (парусина с огнезащитной пропиткой, суконная ткань). Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани с металлизированной нитью.

o средства защиты от повышенных температур (рукавицы, краги, перчатки изготовленные из сукна или спилка)

o щитки защитные лицевые с металлизированным теплоотражающим покрытием.

14.Вентиля́ция (от лат. ventilatio — проветривание) — процесс удаления отработанного воздуха из помещения и замена его наружным. В необходимых случаях при этом проводится: кондиционирование воздуха, фильтрация, подогрев или охлаждение, увлажнение или осушение, ионизация и т. д. Вентиляция обеспечивает санитарно-гигиенические условия (температуру, относительную влажность, скорость движения воздуха и чистоту воздуха) воздушной среды в помещении, благоприятные для здоровья и самочувствия человека, отвечающие требованиям санитарных норм, технологических процессов, строительных конструкций зданий, технологий хранения и т. д.см.лекцию2

Защита от инфракрасного (теплового) излучения

Для защиты от теплового излучения применяются СКЗ и СИЗ. Основными методами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование.

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,35 кВТ/м2, температуру поверхности оборудования не более 35°С при температуре внутри источника теплоты до 100°С и 45°С при температуре внутри источника теплоты более 100″С.

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопроводностью.

Конструктивно теплоизоляция может быть мастичной, оберточной, засыпной, из штучных изделий и комбинированной.

Мастичную изоляцию осуществляют путем нанесения на поверхность изолируемого объекта изоляционной мастики.

Оберточная изоляция изготовляется из волокнистых материалов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов.

Засыпная изоляция в основном используется при прокладке трубопроводов в каналах и коробах. Для засыпки применяют, например, керамзит.

Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изоляционных работ.

Комбинированная изоляция выполняется многослойной. Первый слой обычно выполняют из штучных изделий, последующие — мастичные и оберточные материалы.

Теплозащитные экраны применяют для экранирования источников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энергию. Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны. По конструктивному выполнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны. Экраны выполняются в виде каркаса с закрепленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием.

В качестве отражающих материалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску.

Для непрозрачных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоздушной смесью, что обеспечивает температуру на наружной поверхности экрана не более 30. 35 «С.

Полупрозрачные экраны применяют в тех случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки З. 3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Воздушное душирование представляет собой подачу на рабочее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стационарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

Средства индивидуальной защиты. Применяется теплозащитная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тонкий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащитными свойствами.

Защита от инфракрасного (теплового) излучения;

Для защиты от теплового излучения применяются средства кол­лективной и индивидуальной защиты.

Читать еще:  Коэффициент надежности срабатывания защиты

Основными методами коллективной защиты являются:

· тепло­изоляция рабочих поверхностей источников излучения теплоты,

· эк­ранирование источников или рабочих мест,

· воздушное душирование рабочих мест,

· мелкодисперсное распыление воды с созданием водя­ных завес, общеобменная вентиляция,

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т.д.) снижает температуру излучающей поверхности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизо­ляции применяют материалы с низкой теплопроводностью.

Теплозащитные экраны применяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения темпе­ратуры поверхностей предметов и оборудования, окружающих рабочее место. Теплозащитные экраны поглощают и отражают лучистую энер­гию. Различают теплоотражающие, теплопоглощающие и теплоотво-дящие экраны. По конструктивному выполнению экраны подразде­ляются на три класса: непрозрачные, полупрозрачные и прозрачные.

Непрозрачные экраны выполняются в виде каркаса с закреп­ленным на нем теплопоглощающим материалом или нанесенным на него теплоотражающим покрытием. В качестве отражающих мате­риалов используют алюминиевую фольгу, алюминий листовой, белую жесть; в качестве покрытий — алюминиевую краску. Для непрозрач­ных поглощающих экранов используется теплоизоляционный кирпич, асбестовые щиты.

Непрозрачные теплоотводящие экраны изготавливаются в виде полых стальных плит с циркулирующей по ним водой или водовоз-душной смесью, что обеспечивает температуру на наружной поверх­ности экрана не более 30. 35 °С.

Полупрозрачные экраны применяются в случаях, когда экран не должен препятствовать наблюдению за технологическим процессом и вводу через него инструмента и материала.

В качестве полупрозрачных теплопоглощающих экранов ис­пользуют металлические сетки с размером ячейки З. 3,5 мм, завесы в виде подвешенных цепей. Для экранирования кабин и пультов управления, в которые должен проникать свет используют стекло, армированное стальной сеткой. Полупрозрачные теплоотводящие эк­раны выполняют в виде металлических сеток, орошаемых водой, или в виде паровой завесы.

Прозрачные экраны изготовляют из бесцветных или окрашен­ных стекол — силикатных, кварцевых, органических. Обычно такими стеклами экранируют окна кабин и пультов управления. Теплоотво­дящие прозрачные экраны выполняют в виде двойного остекления с вентилируемой воздухом воздушной прослойкой, водяных и водо-дисперсных завес.

Средства индивидуальной защиты. Применяется теплозащит­ная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тон­кий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащит­ными свойствами.

Защита от ультрафиолетового излучения

Для защиты от ультрафиолетового излучения применяют спе­циальные светофильтры, не пропускающие ЭМИ ультрафиолетового диапазона. Светофильтрами снабжаются смотровые окна установок, внутри которых возникает излучение УФ-диапазона (установки газо­электросварки и резки, плазменной обработки материала; печи, ис­пользующие в качестве нагревательных элементов мощные лампы; устройства накачки лазеров). Применяются также противосолнечные экраны и навесы.

В качестве средств индивидуальной защиты применяются све­тозащитные очки и щитки, для защиты кожи — защитная одежда, рукавицы, специальные кремы. Наиболее характерно применение таких СИЗ при проведении газо- и электросварочных работ.

ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ. Их источники.

Ионизирующим называется излучение, которое прямо или кос­венно вызывает ионизацию среды. Ионизирующее излучение, как и электромагнитное, не воспринимается органами чувств человека, по­этому оно особенно опасно.

Естественными источниками ионизирующих излучений явля­ются высокоэнергетические космические частицы, а также рассеянные в земной коре долгоживущие радиоизотопы — калий-40, уран-238, уран-235, торий-232 и др., являющиеся источниками альфа- и бета-частиц, гамма-квантов и т.д. Распад урана и тория сопровождается образованием радиоактивного газа радона, который из горных пород постоянно поступает в атмосферу и гидросферу и присутствует в не­больших концентрациях повсеместно.

Искусственными источниками ионизирующих излучений яв­ляются радиоактивные выпадения от ядерных взрывов, выбросы атомных электростанций, заводов по переработке ядерного топлива, выбросы тепловыми электростанциями золы, содержащей естествен­ные радиоактивные элементы — торий и радий.

Различные приборы: аппараты для лучевой терапии; радиаци­онные дефектоскопы; радиоизотопные термоэлектрические генерато­ры; толщиномеры, плотномеры, влагомеры, высотомеры; измерители и сигнализаторы уровня жидкости; нейтрализаторы статического электричества; электрокардиостимуляторы; пожарные извещатели и др. также являются искусственными источниками ионизирующих излучений.

Незначительному облучению люди подвергаются при изотопной и рентгеновской диагностике, радиационной терапии, при просмотре телепередач и работе на дисплеях.

Особое место среди искусственных источников ионизирующих излучений занимают ядерные энергетические установки. Их исполь­зуют на атомных электростанциях, ледоколах, подводных лодках.

Для получения и переработки ядерного горючего создан целый комплекс предприятий, объединенных в ядерно-топливный цикл (ЯТЦ). ЯТЦ включает предприятия по добыче урана (урановые рудники), его обогащению, изготовлению топливных элементов, сами АЭС, пред­приятия вторичной переработки отработанного ядерного горючего (радиохимические заводы), по временному хранению и переработке образующихся радиоактивных отходов ЯТЦ и, наконец, пункты веч­ного захоронения радиоактивных отходов (могильники).

При работе АЭС различные элементарные частицы могут про­никать через защитные оболочки, микротрещины и попадать в тепло­носитель и воздух. Целый ряд технологических операций при произ­водстве электрической энергии на АЭС могут приводить к загрязнению воды и воздуха. Поэтому атомные станции снабжены системой водо- и газоочистки. Однако сложные и дорогостоящие системы защиты от радиации на предприятиях ЯТЦ дают возможность обеспечить защи­ту человека и окружающей среды до очень малых величин, сущест­венно меньших существующего техногенного фона.

Наиболее опасны заводы по переработке отработанного ядерного горючего, которое обладает очень высокой активностью. На этих пред­приятиях образуется большое количество жидких отходов с высокой радиоактивностью, существует опасность развития самопроизвольной цепной реакции (ядерная опасность).

В настоящее время существует серьезная проблема утилизации радиоактивных отходов, которые являются весьма значимыми источ­никами радиоактивного загрязнения биосферы.

При нормальной работе АЭС выбросы в окружающую среду малы и оказывают небольшое воздействие на проживающее поблизо­сти население.

Иная ситуация складывается при отклонении от нормального режима работы, а особенно при авариях. Так, произошедшая в 1986 г. авария (которую можно отнести к катастрофам глобального масшта­ба — самая крупная авария на предприятиях ЯТЦ за всю историю развития ядерной энергетики) на Чернобыльской АЭС привела к вы­бросу в окружающую среду лишь 5% всего топлива. Этот выброс при­вел к облучению большого количества людей, большому количеству смертей, загрязнению очень больших территорий, необходимости мас­сового переселения людей.

Авария на Чернобыльской АЭС ясно показала, что ядерный способ получения энергии возможен лишь в случае принципиального исключения аварий крупного масштаба на предприятиях ЯТЦ.

Защита от инфракрасного (теплового) излучения

Для защиты от теплового излучения применяются СКЗ и СИЗ. Средства коллективной защиты от тепловых излучений: теплоизоляция (мастичная, оберточная, засыпная, из штучных изделий), теплозащитные экраны (теплопоглощающие, теплоотражающие, теплоотводящие), воздушное душирование (с верхним подводом воздуха, с нижним подводом воздуха, веерное), радиационное охлаждение, мелкодисперсное распыление воды, вентиляция.Основными метода­ми защиты являются: теплоизоляция рабочих поверхностей ис­точников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиацион­ное охлаждение, мелкодисперсное распыление воды с созданием водяных завес, общеобменная вентиляция, кондиционирование. Средства защиты от теплового излучения должны обеспечи­вать: тепловую облученность на рабочих местах не более 0,35 кВТ/м 2 , температуру поверхности оборудования, до которой может дотронуться человек, не более 35 0 С при температуре внутри источника теплоты до 100 0 С и 45 °С при температуре внутри источника теплоты более 100 0 С. Если это обеспечить Нельзя, источник ограждают. Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т. д.) снижает температуру излучающей поверх­ности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопро­водностью. Мастичную изоляцию осуществляют путем нанесения на по­верхность изолируемого объекта изоляционной мастики. Оберточная изоляция изготовляется из волокнистых материа­лов — асбестовой ткани, минеральной ваты, войлока и др. и наиболее пригодна для трубопроводов и сосудов. Засыпная изоляция в основном используется при прокладке трубопроводов в каналах и коробах. Для засыпки применяют, например, керамзит. Штучная изоляция выполняется формованными изделиями — кирпичом, матами, плитами и используется для упрощения изо­ляционных работ. Комбинированная изоляция выполняется многослойной. Пер­вый слой обычно выполняют из штучных изделий, последую­щие — мастичные и оберточные материалы.

Читать еще:  Удалить троянский вирус с компьютера

Теплозащитные экраны применяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружаю­щих рабочее место. Теплозащитные экраны поглощают и отра­жают лучистую энергию. По конструктивному вы­полнению экраны подразделяются на три класса: непрозрачные, полупрозрачные и прозрачные. Воздушное душирование представляет собой подачу на рабо­чее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стацио­нарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером. Средства индивидуальной защиты. Применяется теплозащит­ная одежда из хлопчатобумажных, льняных тканей, грубодисперсного сукна. Для защиты от инфракрасного излучения высо­ких уровней используют отражающие ткани, на поверхности ко­торых нанесен тонкий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повы­шенными теплозащитными свойствами.

50 Герметичные системы, находящиеся под давлением.

Герметизированные системы, в которых под давлением нахо­дятся сжатые газы и жидкости (нередко токсичные, пожаро-взрывоопасные или имеющие высокую температуру), широко применяются в современном производстве. Такие системы явля­ются источником повышенной опасности, и поэтому при их проектировании, изготовлении, эксплуатации и ремонте должны строго соблюдаться установленные правила и нормы.

К рассматриваемым установкам, сосудам и системам относят паровые и водогрейные котлы, экономайзеры и пароперегреватели; трубо­проводы пара, горячей воды и сжатого воздуха; сосуды, цистер­ны, бочки; баллоны; компрессорные установки; установки газо­снабжения.

Одним из основных требований, предъявляемых к системам, находящимся под давлением, является их герметичность.

Герметичность — это непроницаемость жидкостями и газами стенок и соединений, ограничивающих внутренние объемы уст­ройств и установок.

Принцип герметичности, т. е. непроницаемость, использует­ся во всех устройствах и установках, в которых в качестве рабо­чего тела применяется жидкость или газ. Этот принцип является также обязательным для вакуумных установок.

Любые системы повышенного давления всегда представляют собой потенциальную опасность.

Классификация герметичных систем. Из множества герметичных устройств и установок можно выделить те, которые наиболее широко применяются в промышленности. К ним следует отнести:

1. Трубопроводы. Жидкости и газы, транспортируемые по тру­бопроводам, разбиты на следующие укрупненные группы, в соответствии с которыми установлена опознавательная окраска трубопроводов: вода — зеленый, пар — красный, воздух — синий, газы горючие и негорючие — желтый, кислоты — оранжевый, щелочи — фиолетовый, жидкости горючие и негорючие — коричневый, прочие вещества – серый.

Чтобы выделить вид опасности, на трубопроводы наносят предупреждающие (сигнальные) цветные кольца: Взрывоопасные, огнеопасные, легковоспламеняющиеся вещества – красный; Безопасные и нейтральные вещества – зеленый; Вещества токсичные, Глубокий вакуум, высокое давление, радиация и т. д. – желтый.

Число предупреждающих колец какого-либо цвета должно соответствовать степени опасности транспортируемого вещества.

Кроме цветных сигнальных колец применяют также преду­преждающие знаки, маркировочные щитки и надписи на трубо­проводах (цифровое обозначение вещества, слово «вакуум» для вакуум-проводов, стрелки, указывающие направление движения жидкости, и др.), которые располагаются на наиболее ответст­венных местах коммуникаций.

2. Баллоны для хранения и перевозки сжатых, сжиженных и растворенных газов при температурах -50. +60 °С. Баллоны изготовляют малой вместимости 0,4—12 л, средней — 20—50 л и большой вместимости 80—500 л. Баллоны малой и средней вместимости изготовляют на рабочие давления 30, 15 и 20 МПа из углеродистой стали и на рабочие давления 15 и 20 МПа из легированной стали.

Для того чтобы легко и быстро распознать баллоны, предна­значенные для определенных газов, предупреждать их ошибоч­ное наполнение и предохранять наружную поверхность от кор­розии, на заводах-изготовителях баллоны окрашивают в уста­новленные стандартом цвета, наносят соответствующие надписи и отличительные полосы (табл. 3.20).

Кроме того, на баллоне указывают наименование газа, а у горловины каждого баллона на сферической части отчетливо должны быть выбиты следующие данные: товарный знак предприятия-изготовителя, дата (месяц, год) изготовления (испыта­ния) и год следующего испытания в соответствии с правилами Росгортехнадзора.

Баллоны для сжатых газов, принимаемые заводами-наполни­телями от потребителей, должны иметь остаточное давление не менее 0,05 МПа, а баллоны для растворенного ацетилена — не менее 0,05 и не более 0.1 МПа. Остаточное давление позволяет определить, какой газ находится в баллонах, проверить герме­тичность баллона и его арматуры и гарантировать непроникно­вение в баллон другого газа или жидкости. Кроме того, остаточ­ное давление в баллонах для ацетилена препятствует уносу аце­тона-растворителя ацетилена.

3. Сосуды для сжиженных газов.Сжиженные газы хранят и перевозят в стационарных и транспортных сосудах (цистернах), снабженных высокоэффективной тепловой изоляцией.

Для хранения и транспортирования криогенных продуктов (азота, аргона, кислорода и воздуха) изготовляют специальные криогенные сосуды.

Транспортные сосуды (цистерны) обычно имеют объем до 35 тыс.л. Наружную поверхность резервуаров окрашивают эма­лью, масляной или алюминиевой красками в светло-серый цвет. На транспортных сосудах наносят надписи и отличительные по­лосы.

4. Газгольдеры. Они могут быть низкого (постоянного) и высокого (переменного) давления. Газгольдеры высокого давления служат для создания запаса газа высокого давления. Расходуе­мый из него газ проходит через редуктор, который понижает давление и поддерживает его постоянным в течение всего процесса подачи газа потребителю. Обычно такие газгольдеры соби­рают из баллонов большого объема, изготовляемых на рабочее давление меньше 25, 32 и 40 МПа.

Газгольдеры низкого давления имеют большой объем 10 5 -3*10 7 л и применяются для хранения запаса газа, сглажива­ния пульсаций, выдачи газов, отделения механических примесей и других целей.

Кроме герметичных устройств и установок, рассмотренных выше, в промышленности широко применяют сосуды, предна­значенные для ведения химических и тепловых процессов, компрессоры, котлы.

Ссылка на основную публикацию
Adblock
detector