Elettracompany.com

Компьютерный справочник
50 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита транспортных средств от атмосферного электричества

Защита от атмосферного электричества.

При определенных условиях в дождевом облаке могут накапливаться электрические заряды. Этому способствуют аэродинамические и термические процессы (восходящие воздушные потоки, конденсация паров на высоте от 1 до 6 км, образование капель, их дробление). В результате этих процессов капли получают суммарный отрицательный заряд и наполняют нижнюю часть облака, а более инерционные положительные ионы воздуха – верхнюю часть. При этом, внутри облака образуется электрическое поле между распределенными разнополярными зарядами.

Таким образом, молния – это электрический разряд в атмосфере между заряженным облаком и землей или между разноименно заряженными частями облака. Разряд имеет преимущественно вид линейной молнии. Направленный вниз заряд между облаком и землей делится на лидерный (начальный) и главный (обратный). Обычно он начинается с прорастания от облака к земле слабо светящегося канала-ступенчатого лидера. При касании головки лидера земли возникает главный разряд. Он связан с нейтрализаций отрицательных зарядов лидера положительными зарядами земли и напоминает короткое замыкание. Главный разряд сопровождается интенсивным свечением, уменьшающимся при приближении к облаку, а также звуком (громом). Этот разряд и воспринимается людьми как молния. Основной источник их поражения – линейная молния.

Грозовой разряд оказывает на человека тепловое воздействие, а также механическое и электромагнитное.

От прямых ударов молнии объекты защищают молниеотводами различных типов и конструкций. Молниеотвод любого типа состоит из молниеприемника, предназначенного для непосредственного приема удара молнии, токоотвода, обеспечивающего отвод тока молнии к заземлению, и заземлителя, отводящего ток молнии в землю. Для крепления молниеприемников и токоотводов предназначены несущие конструкции (опоры).

Принцип действия молниеотводов основан на использовании свойства избирательности поражений молнией более высоких и хорошо заземленных предметов. Поэтому необходимо, чтобы молниеотвод возвышался над защищаемым объектом и имел достаточно хороший контакт с землей. Молниеотвод создает условия для ориентации лидерного разряда в направлении вершины молниеотвода (за счет создания наибольшей напряженности электрического поля на пути между развивающимся лидерным каналом и вершиной молниеотвода). Таким образом, молниеотвод как бы “отбирает” на себя грозовые разряды, возникающие в определенной зоне вокруг него, и, тем самым, экранирует расположенные поблизости от него более низкие объекты.

Пространство вокруг молниеотвода, защищенное от прямых ударов молнии, называется зоной защиты молниеотвода. Защищаемый объект должен полностью входить в зону защиты.

В зависимости от категории здания по устройству молниезащиты и ожидаемого числа поражений молнией в год требуется, чтобы объект полностью располагался в зоне защиты типа А или Б. Зона защиты типа А обладает степенью надежности (на ее границе) не ниже 99,5%, а зона защиты типа Б – не ниже 95%. Это очень высокая степень надежности. Прорыв молнии в зону защиты типа А возможен только в пяти случаях из тысячи ударов, а в зону защиты типа Б – в пяти случаях из ста.

Обычно применяют стержневые, тросовые и сетчатые типы молниеотводов. Для молниезащиты одного или группы строений применяют молниеотводы одного типа, но в ряде случаев целесообразно использовать комбинированные типы молниеотводов (например, тросово-стержневой молниеотвод).

Важным элементом молниеотвода является его заземляющее устройство, т.е. специальная металлическая конструкция, расположенная в земле. Оно служит для безопасного отвода тока молнии в землю.

Конструктивно молниеотводы и их заземляющие устройства должны выполняться следующим образом.

1. Опоры стержневых молниеотводов могут изготавливаться из стали любой марки, железобетона или дерева. Они должны быть рассчитаны на механическую прочность как свободно стоящие конструкции, а опоры тросовых молниеотводов – с учетом натяжения троса и действия на него ветровой и гололедной нагрузке.

2. Стержневые молниеприемники должны быть изготовлены сечением не менее 100 мм² и длиной не менее 200 мм из стали любой марки. Тросовые молниеприемники должны быть выполнены из стальных многопроволочных канатов сечением не менее 35 мм². Соединения молниеприемников с токоотводами и токоотводов с заземлителями должны выполняться, как правило, сваркой. Эти соединения и токоотводы изготовливаются из круглой стали диаметром не менее 6 мм. Токоотводы, прокладываемые по наружным стенам здания, следует располагать не ближе 3 м от входов или в местах, недоступных для прикосновения людей.

3. В качестве естественных заземлителей молниезащиты допускается использование любых конструкций железобетонных фундаментов зданий и сооружений при условии обеспечения непрерывной электрической связи по их арматуре и присоединения ее к закладным деталям. Допускается также использование для молниезащиты всех заземлителей электроустановок, рекомендуемых ПУЭ

4. Должны быть предусмотрены искусственные заземлители. Их следует располагать под асфальтовым покрытием либо в редко посещаемых местах (на газонах, в удалении от грунтовых проезжих и пешеходных дорог) на расстоянии 5 м и более.

30. Статическое электричество: сущность, опасность, методы защиты

При статической электризации во время технологических процессов, сопровождающихся трением, размельчением твердых частиц, пересыпанием сыпучих тел, переливанием жидкостей — диэлектриков, на изолированных от земли металлических частях производственного оборудования возникает электрическое напряжение относительно земли порядка десятков киловольт.

Так, при движении резиновой ленты транспортера в сельс­кохозяйственных агрегатах с электроприводом через клиноременную передачу в устройствах ременной передачи на лен­те (ремне) и на роликах (шкивах) возникают электростати­ческие заряды противоположных знаков большой величины, а потенциалы их достигают 45 кВ. Основную роль при этом играют влажность, давление воздуха и состояние поверхнос­тей лент (ремней) и роликов (шкивов), а также скорость отно­сительного движения (пробуксовки). Аналогично происходит электризация при сматывании тканей, бумаги, пленки и др.

При относительной влажности воздуха 85% и более электростатических зарядов обычно не возникает.

Возникающие в производственных условиях электроста­тические заряды могут служить импульсом, способным при наличии горючих смесей вызвать пожар и взрыв. В ряде случаев статическая электризация тела человека и затем пос­ледующие разряды с тела человека на землю или заземлен­ное производственное оборудование, а также электрический разряд с незаземленного оборудования через тело человека на землю могут вызвать нежелательные болевые и нервные ощущения и быть причиной непроизвольного резкого дви­жения человека, в результате которого он может получить ту или иную механическую травму (ушибы, ранение). ‘

Устранение опасности возникновения электростатических зарядов достигается следующими мерами: заземлением про­изводственного оборудования и емкостей для хранения лег­ковоспламеняющихся и горючих жидкостей; увеличением электропроводности поверхностей электризующихся тел пу­тем повышения влажности воздуха или применением анти­статических примесей к основному продукту (жидкости, ре­зиновые изделия и др.); ионизацией воздуха с целью увели­чения его электропроводности.

31. Индивидуальные средства защиты от поражения электрическим током.

Электрозащитные средства должны находиться в поме­щениях электроустановок в качестве инвентарного имуще­ства. Они распределяются по местам хранения и это поло­жение должно быть зафиксировано в списках, утвержден­ных главным энергетиком предприятия. Ответственность за своевременное обеспечение персонала и комплектование электроустановок электрозащитными средствами несут на­чальник цеха, службы участка, а в целом по предприятию — главный инженер. Электротехнический персонал получает электрозащитные средства в индивидуальное пользование и отвечает за их правильную эксплуатацию и своевремен­ную отбраковку. Все электрозащитные средства должны быть пронумерованы, храниться в специальных помещениях, шка­фах, ящиках.

При эксплуатации средства защиты должны подвергать­ся периодическим и внеочередным испытаниям (после ре­монта) согласно ПТЭ и ПТБ.

Электрозащитные средства служат для защиты людей, работающих с электроустановками, от поражения электри­ческим током, от воздействия электрической дуги и электро­магнитного поля.

Основные электрозащитные средства защиты, изоляция которых длительно выдерживает рабочее напряжение элект­роустановок, позволяют прикасаться к токоведущим частям, находящимся под напряжением.

Дополнительные электрозащитные средства защиты сами по себе не могут при данном напряжении обеспечить защиту от поражения током, а применяются совместно с основными электрозащитными средствами.

К электрозащитным средствам относятся:

изолирующие штанги (оперативные, для наложения за­земления, измерительные), изолирующие (для операций с предохранителями) и электроизмерительные клещи, указатели напряжения, указатели напряжения для фазировки и т. д.;

изолирующие устройства и приспособления для ремонт­ных работ под напряжением выше 1000 В и слесарно-монтажный инструмент с изолирующими рукоятками для рабо­ты в электроустановках напряжением до 1000 В;

диэлектрические перчатки, боты, галоши, ковры, изолиру­ющие накладки и подставки;

индивидуальные экранизирующие комплекты;

оградительные устройства и диэлектрические колпаки;

плакаты и знаки безопасности.

Кроме перечисленных электрозащитных средств при работах в электроустановках следует, при необходимости, применять такие средства индивидуальной защиты, как очки, каски, противогазы, рукавицы, предохранительные монтерские по­яса и страховочные канаты.

Классификация защитных средств в зависимости от напряжения электроустановки приведена в таблице.

Защита транспортных средств от атмосферного электричества

Молниезащита — это система защитных устройств и мероприятий, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от возможных взрывов, возгораний и разрушения йнувань, вызванных заземления.

Молния — особый вид прохождения электрического тока через огромные воздушные прослойки, источником которого является атмосферное заряд, накопленный грозовым облаком. Условия образования таких облаков — большая влажные ость и быстрая смена температуры воздуха. При таких условиях в атмосфере. Земли происходят сложные физические процессы, приводящие к образованию и накоплению электрических зарядов. При повышении напряженности и электрического поля до критических значений возникает разряд, который сопровождается ярким свечением (молнией) и звуком (громом). Длина канала молнии может достигать нескольких километров, сила тока — 200 000. А, напряжение — 150 000 кВ, а температура — 10 000 °. С и более. Продолжительность молнии 0,1-1,0 с каждой секундой земной шар поражают в среднем более 100 сверкалскавок.

Читать еще:  Компьютерные вирусы лекция

Различают первичные (прямой удар) и вторичные проявления молнии

Прямой удар молнии (поражение молнией) — непосредственный контакт канала молнии с зданием или сооружением, сопровождающийся протеканием через нее тока молнии. Прямой удар молнии оказывает на у поражен объект следующие действия: электрическую, связанная с поражением людей и животных электрическим током и возникновением перенапряжений на элементах, по которым ток отводится в землю; тепловую, обусловленная значительным выделением теплоты на пути прохождения тока молнии через объект; механическую, вызванной ударной волной, которая распространяется от канала молнии, а также электродинамическими силами, что вины возникающих в конструкциях, через которые проходит ток молниии.

Вторичные проявления молнии связаны с приведением потенциалов на металлических элементах конструкций, оборудовании, незамкнутых металлических контурах, что вызвано близкими разрядами молнии. Пожарная опасности эка вторичных проявлений молнии объясняется возникновением искрения внутри объекта, что может привести к пожару или взрыву.

К вторичных проявлений молнии относятся:

— электростатическая индукция, которая заключается в наведении потенциалов на наземных предметах в результате изменений электрического поля грозовых объектов. Даже на расстоянии до 100 м от места попадания молнии в здания разность потенциалов между конструкциями (металлические кровли, фермы, подкрановые пути и т.п.) и землей может достигать десятков киловольт и способна вызвать искровой разряд;

— электромагнитная индукция сопровождается появлением в пространстве переменного магнитного поля, которое индуцирует в металлических контурах, образованных из различных протяженных коммуникаций (трубопроводов, электропроводов и т др.) электродвижущую силу (ЭДС). Если в контурах контакты недостаточно надежны в местах соединения, то приведенный. ЭДС ток может вызывать искрение или сильный нагревння;

— заноса высоких потенциалов в здание происходит по металлоконструкциям, что подведены в это здание (трубопроводах, рельсовых путях, эстакадах, проводах линий электропередачи и т др.). Они сопро оводжуються электрическими разрядами, которые могут стать источником взрыва или пожара. Такое внесения происходит не только во время прямого попадания молнии в металлоконструкции, но и в случаях, когда они находятся рядом с пораженными ею местамцями.

Защита объектов от прямых ударов молнии обеспечивается путем обустройства молниеотводов. Конструкцию молниеотвода, не претерпел принципиальных изменений и используется до сих пор, изобрел. Бенджи амин. Франклин в 1749 г и. Михаил. Ломоносов в 1758 р.

Защита от электростатической индукции (вторичный проявление молнии) осуществляется присоединением оборудования к заземлителю для отвода электростатических зарядов, индуцированных молнией, в землю. Защита е ид электромагнитной индукции заключается в установлении методом сварки перемычек между протяженными металлоконструкция мы в местах их сближения менее чем на 10 см. Интервал между перемычками должен не п еревищуваты 20 м. Это позволяет приведенном тока молнии переходить из одного контура в другой без образования электрических разрядов. Защита от заноса высоких потенциалов в здание осуществляется путем присоединения к заземлителю металлоконструкций до их в зданиеівлю.

Здания и сооружения подразделяются по уровню молниезащиты на три категории. Принадлежность объекта, подлежащего молниезащиты, к той или иной категории определяется, главным образом, его назначени нием и классом взрывопожароопасных зон по. Правилам устройства электроустановок (ПУЭ).

Здания и сооружения или их части с взрывоопасными зонами классов 0, 1, 20, 21 (в соответствии с. ДНАОП 000-132-01). В них хранятся, находятся постоянно, или используются во время производственного в процесса легковоспламеняющиеся и горючие вещества, способные образовывать газо-, пыле-, паровоздушные смеси, для взрыва которых достаточно небольшого электрического разряда (искрыри).

Здания и сооружения или их части, в которых имеются взрывоопасные зоны классов 2, 22. Взрывоопасные газо-, пыле-, паровоздушные смеси в них могут появиться только в случае аварии или нарушения установле еного технологического процесса. К этой же категории относятся внешние установки и склады, в которых хранятся взрывоопасные материалы, легковоспламеняющиеся и горючие жидкостини.

Целый ряд зданий и сооружений, в частности: здания и сооружения с пожароопасными зонами классов. П-I,. П-II и. П-IIа; внешние технологические установки, открытые склады горючих веществ, принадлежащих к зонам к классов II-III; дымовые и другие трубы предприятий и котельных, башни и вышки различного назначения высотой 15 м и более.

Объекты I и II категорий необходимо защищать как от прямых ударов молнии, так и от вторичных ее проявлений. Здания и сооружения III категории должны иметь защиту от прямых ударов молнии и заноса ния высоких потенциалов, а наружные установки — только от прямых ударев.

При выборе устройств молниезащиты по категориям учитывают важность объекта, его высоту, местоположение среди соседних объектов, рельеф местности, интенсивность грозовой деятельности последних ней параметр характеризуется среднегодовой продолжительности гроз в часах для данной местности (табл. 39.9).

. Таблица 39. Средняя интенсивность грозовой деятельности в различных регионах (областях) Украины

Защита от атмосферного и статического электричества;

Защита от атмосферного и статического электричества.

Атмосферное электричество. Разряды атмосферного и статического электричества могут явиться причиной поражения людей током, возникновения пожаров и взрывов.

Особенно подвержены поражению молнией объекты, значительно возвышающиеся над земной поверхностью (мачты, надстройки судов, трубы заводов, высотные здания). В этих местах резко возрастает напряженность электрического поля, что и способствует возникновению благоприятных условий для разряда. Токи атмосферного электричества всегда избирают к земле кратчайшийпуть наименьшего сопротивления. Это обстоятельство используется для создания заранее запрограммированного пути разряда молнии в землю через металлические мачты, поднятые над защищаемым объектом. Такие устройства назвали молниеотводами.

Грозовые разряды могут поражать наземные объекты прямыми ударами молнии, разрушая их (первичное воздействие), а также влиять на них в виде электрической индукции (вторичное воздействие) без прямого контакта с каналом молнии. Электромагнитная индукция сопровождается возникновением в пространстве изменяющегося во времени магнитного поля. Это магнитное поле индуцирует в замкнутых контурах, образованных металлическими конструкциями (электропровода, трубопроводы и пр.), электрические токи, вызывающие их нагревание.

Особую опасность может представлять э.д. с, возникающая в незамкнутых и незаземленных контурах судов, перевозящих нефтепродукты и другие опасные грузы. Возможное искрение может стать причиной взрывов и пожаров на судах.

Для защиты от искрения при электрической индукции рекомендуют для конструктивных мер: соединение металлическими перемычками параллельно проложенных кабелей и труб, заземление оболочек кабелей и трубопроводов в местах ввода их в здания и т. д.

Для предохранения наземных объектов от разрушения и пожаров, вызываемых молнией, выполняется комплекс защитных мероприятий, называемых молниезащитой. Основной элемент молниезащиты — применение системы молниеотводов, которые в зависимости от вида молниеириемника подразделяются на стержневые, тро­совые и сетчатые.

Составные части молниеотвода: молниеприемник, собственно молниеотвод и заземлитель. Все эти части ме­таллические.

Наиболее простой и надежной системой молниезащиты является стержневая, представляющая собой металлические хорошо заземленные стержни, прикрепленные к мачтам или опорам.

Судовые молниезащитные устройства в принципе не отличаются от береговых. Каждая мачта на судне снабжается молниеотводом. Объект считается защищенным от прямых ударов молнии, если зона защиты, образуемая молниеотводом, охватывает все его конструктивные элементы.

Зоной защиты называют пространство, образуемое вокруг каждого молниеотвода, вероятность попадания молнии в которое практически равна нулю.

Судовые радиоантенны, как правило, находятся в зоне защиты стержневых молниеотводов, прикрепленных к мачтам. Однако несмотря на это, во время грозы необходимо принять все меры предосторожности для защиты радиоаппаратуры и обслуживающего ее персонала от грозовых разрядов. Дело в том, что при прямом попадании молнии в радиоантенну в ней может индуктироваться э. д. с. опасного для людей и оборудования уровня. Поэтому во время грозы начальник радиостанции обязан прекратить работу радиоузла и заземлить антенны.

Статическое электричество. Многие производственные процессы на флоте сопровождаются явлением статической электризации. Заряды статического электричества образуются при трении двух диэлектриков или диэлектрика о металл. В связи с широким применением в современном судостроении пластмасс и других полимерных материалов для изготовления арматуры и элементов отделки судовых помещений заряды статического электричества на судах стали достигать опасных значений.

Возникновение статического электричества обычно связано с движением газов, паров, пыли по вентиляци-путь наименьшего сопротивления. Это обстоятельство используется для создания заранее запрограммированного пути разряда молнии в землю через металлические мачты, поднятые над защищаемым объектом. Такие устройства назвали молниеотводами.

Грозовые разряды могут поражать наземные объекты прямыми ударами молнии, разрушая их (первичное воздействие), а также влиять на них в виде электричской индукции (вторичное воздействие) без прямого контакта с каналом молнии. Электромагнитная индук­ция сопровождается возникновением в пространстве изменяющегося во времени магнитного поля. Это магнитное поле индуцирует в замкнутых контурах, образованных металлическими конструкциями (электропроводка, трубопроводы и пр.), электрические токи, вызывающие их нагревание.

Читать еще:  Статья 16 защита информации

Особую опасность может представлять э.д. с, возникающая в незамкнутых и незаземленных контурах судов, перевозящих нефтепродукты и другие опасные грузы. Возможное искрение может стать причиной взрывов и пожаров на судах.

Для защиты от искрения при электрической индукции рекомендуют для конструктивных мер: соединение металлическими перемычками параллельно проложенных кабелей и труб, заземление оболочек кабелей и трубопроводов в местах ввода их в здания и т. д.

Для предохранения наземных объектов от разрушения и пожаров, вызываемых молнией, выполняется комп­екс защитных мероприятий, называемых молниезащи-той. Основной элемент молниезащиты — применение системы молниеотводов, которые в зависимости от вида молниеириемника подразделяются на стержневые, тросовые и сетчатые.

Составные части молниеотвода: молниеприемник, собственно молниеотвод и заземлитель. Все эти части металлические.

Наиболее простой и надежной системой молниеза­щиты является стержневая, представляющая собой металлические хорошо заземленные стержни, прикрепленные к мачтам или опорам.

Судовые молниезащитные устройства в принципе не отличаются от береговых. Каждая мачта на судне снабжается молниеотводом. Объект считается защищенным от прямых ударов молнии, если зона защиты, образуемая молниеотводом, охватывает все его конструктивные элементы.

Зоной защиты называют пространство, образуемое вокруг каждого молниеотвода, вероятность попадания молнии в которое практически равна нулю.

Судовые радиоантенны, как правило, находятся в зоне защиты стержневых молниеотводов, прикрепленных к мачтам. Однако несмотря на это, во время грозы необходимо принять все меры предосторожности для защиты радиоаппаратуры и обслуживающего ее персонала от грозовых разрядов. Дело в том, что при прямом попадании молнии в радиоантенну в ней может ин­дуктироваться э. д. с. опасного для людей и оборудования уровня. Поэтому во время грозы начальник радиостанции обязан прекратить работу радиоузла и заземлить антенны.

Статическое электричество. Многие производственные процессы на флоте сопровождаются явлением статической электризации. Заряды статического электричества образуются при трении двух диэлектриков или диэлектрика о металл. В связи с широким при­менением в современном судостроении пластмасс и других полимерных материалов для изготовления арматуры и элементов отделки судовых помещений заряды статического электричества на судах стали достигать опасных значений.

Возникновение статического электричества обычно связано с движением газов, паров, пыли по вентиляци-

онным каналам, огнеопасных жидкостей по трубопрово­дам, при трении твердых веществ. При этом разность потенциалов статического электричества может дости­гать 20—50 кВ. Опасность этого явления очевидна, если принять во внимание, что при разности потенциалов, равно 3 кВ, искровой электростатический разряд мо­жет воспламенить большинство горючих газов, а при 5 кВ — большую часть горючей пыли. Таким образом, при перевозке опасных грузов статическое электричест­во может стать причиной пожара или даже гибели судна.

Возможность электризации до высоких потенциалов зависит от электропроводимости веществ, их химиче­ского состава, состояния окружающей среды, скорости относительного перемещения частиц.

В некоторых случаях накопителем статического элек­тричества становится человек. Электрический потенци­ал может появиться при длительном хождении челове­ка в сухую погоду в резиновой обуви по бетону, асфаль­ту, по полу с синтетическим покрытием. Электризация тела человека происходит также в процессе ношения им одежды из синтетических материалов (капрон, ацетат­ный шелк, нейлон), прочно вошедших в быт современ­ных людей.

Биологическое воздействие статического электриче­ства на человека еще полностью не изучено. Определена приблизительная норма допустимой (безвредной) на­пряженности электрического поля, созданного электро­статическим зарядом. Согласно Санитарным правилам напряженность поля статического электричества, гене­рируемого на поверхности полимерного материала, с которым контактирует человек, не должна превышать 200 В/см.

На судах воздействие статического электричества на человека выражается в угнетенном состоянии его психики, снижении работоспособности, а также в неприятных, болевых ощущениях от электрических разрядов при касании поверхностей, отделанных пластиками. Известны случаи пожаров, возникших от искровых разрядов при прикосновении наэлектризованного тела человека к пожароопасному объекту.

Для борьбы со статическим электричеством разработан комплекс конструктивных и технологических мер, получивших отражение в Правилах по защите от статического электричества на морских судах, которые введены в действие с 1 октября 1973 г. Правилами, в частности, запрещено использование на судах, перевозящих опасные грузы (танкерах, газовозах), постельного белья, занавесей, ковриков и других предметов из синтетических тканей. Членам экипажей таких судов не рекомендуется носить в рейсах белье и одежду из искусствен­ного волокна. Перед швартовкой синтетические швартовные канаты рекомендуется смачивать забортной водой для снижения вероятности образования электростатических зарядов.

Одним из основных видов защиты от статического электричества является заземление. Необходимо заземлять все изолированные части оборудования, в том числе шланги и трубопроводы, предназначенные для приема и слива огнеопасных жидкостей, а также емкости для хранения и перевозки сжиженных газов и других опасных грузов. На танкерах должны быть предусмотрены устройства для присоединения металлических заземлителей, соединенных с наконечниками приемных шлангов.

Специальные шины, проложенные вдоль шлангов, должны быть надежно соединены между собой и с корпусом судна. Не допускается наличие каких-либо плавающих предметов на поверхности пожароопасных жидкостей. Поплавковые измерители уровней жидкости необходимо крепить таким образом, чтобы исключить возможность отрыва их и удара в стенки цистерны во

избежание искрового разряда. Подачу огнеопасных жид­костей необходимо осуществлять плавно, без разбрызгиваний и таким образом, чтобы исключить образова­ние свободно падающей струи. Поэтому сливная труба должна достигать дна приемного резервуара, а струя направляться вдоль его стенок. Не рекомендуется производить отбор проб жидкости на анализ во время налива и слива. Это можно делать только тогда, когда жидкость успокоится и ее поверхность будет ровной.

Установлено, что статическая электризация диэлектриков может быть уменьшена и устранена путем увеличения их поверхностной проводимости. Поверхностную проводимость можно увеличить повышением относительной влажности воздуха и применением антистатических присадок к пластмассам.

Повышенная влажность воздуха в помещении (70% и выше) способствует резкому увеличению проводимости предметов. В таких условиях электрические заряды по мере их образования стекают с поверхности полимерных материалов и нейтрализуются. При достижении относительной влажности воздуха 90% заряды Статического электричества практически исчезают.

Снижение вероятности накопления электростатиче­ских зарядов достигается также созданием временной или постоянной поверхностной пленки из веществ (антистатиков), обладающих высокой электрической проводимостью. Применение полупроводниковых керамических покрытий, а также нанесение на поверхности деталей покрытий из окисла олова, хлорида олова и других веществ способствует повышению электрической проводимости материалов.

Кроме того, при уменьшении скорости движения жидкостей или газов, а также ионизации воздуха или среды предотвращается достижение электростатическим потенциалом опасного уровня. Воздух можно ионизировать с помощью радиоактивного излучения.

Защита транспортных средств от атмосферного электричества

Выполнил: Научный руководитель: к.п.н., доцент Генварева Юлия Анатольевна Цель нашего исследования – теоретически обосновать природу образования электричества в атмосфере и экспериментально проверить необходимые условия для появления линейной молнии, предложить средства и методы защиты транспортных средств от атмосферного электричества.

В соответствии с поставленной целью определены задачи исследования: 1)изучить научно-популярную литературу по данной проблеме;

2)рассмотреть гипотезы о природе атмосферного электричества различных представителей науки;

3)изучить физическую природу и опасные факторы атмосферного электричества ;

4)провести наблюдения за частотой возникновения молний от следующих природных условий: 1) температура 2) давление 3) сила ветра 4) облачность 5) вид осадков.

5)проанализировать методы и средства защиты транспортных средств от атмосферного электричества Актуальность: в последнее время интерес к проблеме защиты транспортных средств от атмосферного элетричества резко возрос.

Прежде всего, это обусловлено пониманием атмоcферного электричества как важного фактора окружающей среды, тесно взаимосвязанного с другими составляющими природного комплекса планеты и воздействующего на жизнедеятельность человека.

Наряду с известными эффектами (выведение из строя систем электронного обеспечения, воздействие на авиацию, пожароопасность) и совершенствованием методов их контроля, все большее внимание привлекают проблемы электромагнитного загрязнения и его воздействия на экосистемы и человека, а также роли глобальной электрической цепи в системе солнечно- земных связей и климатической системе Земли.

Очевидно, что данная область исследований чрезвычайно насыщена интересной физикой.

Можно не сомневаться, что активная работа здесь не только поможет разобраться со «старыми» загадками атмосферного электричества, но и принесет множество новых.

Объект исследования – процесс образования атмосферного электричества.

Предмет исследования – условия образования линейной молнии и средства защиты транспортных средств .

Гипотеза — возможности наблюдения за условиями, необходимыми для появления линейной молнии становятся благоприятными при соблюдении следующих условий: Если изучение природы молнии ведется теоретически и в процессе наблюдения.

Если наблюдения ведутся ежедневно.

Для проведения исследования по данной теме мы использовали следующие методы научного познания: общелогические методы (анализ, синтез, абстрагирование, обобщение, аналогия, классификация) научные методы эмпирического исследования (наблюдение, описание, сравнение) научные методы теоретического исследования (формализация, аксиоматизация, восхождение от абстрактного к конкретному, мысленный эксперимент).

Читать еще:  Лекция методы защиты информации

Оглавление IВведение IIОсновная часть Глава 1.Теоретическая часть Историческая справка об исследовании атмосферного электричества Гипотезы о природе атмосферного электричества Физическая природа и опасные факторы атмосферного электричества Защита транспортных средств от атмосферного электричества Глава 2.

Практическая часть III Заключение Список литературы Историческая справка об исследовании атмосферного электричества Начало изучению атмосферного электричества было положено в XVIII веке американским учёным Бенджамином Франклином, экспериментально установившим электрическую природу молнии, и русским учёным Михаилом Ломоносовым — автором первой гипотезы, объясняющей электризацию грозовых облаков.

В XX веке были открыты проводящие слои атмосферы, лежащие на высоте более 60—100 км (ионосфера, магнитосфера Земли), установлена электрическая природа полярных сияний и обнаружен ряд других явлений.

Развитие космонавтики позволило начать изучение электрических явлений в более высоких слоях атмосферы прямыми методами.

Две основные современные теории атмосферного электричества были созданы английским учёным Ч.

Вильсоном и советским учёным Я.

Согласно теории Вильсона, Земля и ионосфера играют роль обкладок конденсатора, заряжаемого грозовыми облаками.

Возникающая между обкладками разность потенциалов приводит к появлению электрического поля атмосферы.

По теории Френкеля, электрическое поле атмосферы объясняется всецело электрическими явлениями, происходящими в тропосфере, — поляризацией облаков и их взаимодействием с Землёй, а ионосфера не играет существенной роли в протекании атмосферных электрических процессов.

Гипотезы о природе атмосферного электричества Атмосферное электричество ́́ — совокупность электрических явлений в атмосфере , а также раздел физики атмосферы , изучающий эти явления.

При исследовании атмосферного электричества изучают электрическое поле в атмосфере, её ионизацию и электрическая проводимость, электрические токи в ней, объёмные заряды , заряды облаков и осадков, грозовые разряды и многое другое.

Все проявления атмосферного электричества тесно связаны между собой и на их развитие сильно влияют локальные метеорологические факторы.

К области атмосферного электричества обычно относят процессы, происходящие в тропосфере и стратосфере.

Защита транспортных средств от атмосферного электричества (самолеты) Примеры Удар молнии в самолет Airbus A380 Во время Великой Отечественной войны, 30 мая 1943 года, самолет Ил-4, пролетавший через грозовой фронт, получил удар молнией, загорелся и упал.

14 августа 2010 года в приземляющийся самолет колумбийской авиакомпании ударила молния.

Самолет раскололся на части при приземлении.

Пострадало 114 человек, 1 погиб.

12 мая 2011 года в приземляющийся в аэропорт Хитроу (Лондон) самолет типа Airbus A380 авиакомпании «Emirates» ударила молния.

Самолет и никто из находившихся на борту не пострадал.

По статистике, ежегодно в каждый самолет попадает по несколько ударов молний — во время, когда он преодолевает грозовой фронт во время взлета или посадки.

Последствия Так как большинство современных самолетов (американские Boeing, европейские Airbus, российские Ту и др.) имеют защиту от электрических разрядов и приспособлены для полетов в любую погоду — удар молнии в них проходит без последствий.

При этом самолеты, в которые ударяла молния, после посадки подробно просматривают на предмет целостности обшивки корпуса.

Удар молнии в корпус самолета старого типа, без защиты от электрических разрядов, может привести к пожару, порче обшивки и падению самолета.

Возможно выведение из строя бортовых электросистем самолета, навигационного оборудования.

Защита Все современные модели пассажирских и военных самолетов имеют защиту от удара молнии в обшивку.

На самолет устанавливаются электростатические разрядники, которые обычно находятся на концах крыльев.

Если в самолет ударит молния — они отводят электричество в воздух.

Бортовые электросистемы самолета экранированы, что защищает их от электромагнитного излучения, которое вызывает молния Защита транспортных средств от атмосферного электричества (поезда) Михаил Сцепин, заместитель заведующего отделением безопасности движения Научно-исследовательского института железнодорожного транспорта: – В поездах и электричках предусмотрена молниезащита.

На вагонах с определенными промежутками стоят заземляющие устройства – молниеотводы.

Внутри вагонов во время грозы находиться безопасно.

Там все сделано из материалов, не проводящих электрический ток, – текстолита, дерева, пластика.

Снаружи за вагон, конечно, руками лучше не хвататься.

На железной дороге все рельсы заземлены.

При ударе молнии в рельс срабатывает автоматика, если есть сильный скачок напряжения, линия обесточится, электрички встанут.

Практическая часть Цель исследования – выявить условия, влияющие на появление линейной молнии.

В течение двух месяцев и 6 дней проводились наблюдения за природными явлениями в г.Оренбурге.

Ежедневно в 8 часов утра, в 13 часов дня, в 19 часов вечера измерялись: — температура воздуха — атмосферное давление — сила ветра — облачность, вид облаков.

Показания температуры воздуха брались с показания термометра, установленного в тени.

Давление измерялось с помощью барометра.

Сведения о силе ветра, облачности были взяты из прогноза погоды.

Полученные сведения представлены в таблице: 1516171819202122232425262728 Температура воздуха в 8 часов 17,522211925262321151718191720 В 13 часов3233322836373634182124252225 В19 часов2432282432332119212223241923 Средняя24,5292723,6313226,624,618202122,619,3 22,6 Давление752751751749747745740736743747739737740735 Сила ветра3-64-73-65-62-52-53-63-63-63-63-63-63-63-6 ОблачностьНизкаяВысокаянизкаясредняянизкаянизкаявысокаявысокаявысокаявысокаявысокаявысокаявысокая средняя Вид облаковперистыеКучевыеперистыекучевыеперистыеперистыекучевыекучевыекучевыекучевыекучевыекучевыекучевые кучевые Вид осадковдождьдождьдождьдождьдождьдождьдождьдождь Другие явленияГрозагрозагрозагрозагрозагроза III Выводы Из проведенного исследования можно сделать следующие выводы о природных условиях, предшествующих линейной молнии: Понижение давления;

Вечерняя температура остается высокой в грозовой день;

Сила ветра в грозовой день либо увеличивается, либо остается такой же;

В грозовой день облачность чаще всего высокая;

Грозы появляются только при кучевых облаках.

В этой части были представлены графики давления и температуры, по которым можно предположить, какой день был грозовым.

Проанализированы виды молниеотводов и их применение на различных видах транспорта, обеспечивающих безопасность движения Список литературы: Список литературы.

Базелян Э.М., Райзер В.П.

Физика молнии и молниезащиты.

Шаровая молния и четочная молния.

с англ., Мир, М., 1983.

Плазма – четвертое состояние вещества.

– М: Атомиздат, 1968.

«Физика атмосферы: электрические эффекты, радиофизические методы исследований».

Труды Совещания по Программе ОФН и ОНЗ РАН / Ред.

О физической природе шаровой молнии.

– М: Энергоатомиздат, 1985.

Физическая природа шаровой молнии.

– М: Атомиздат, 1979.

Физика в природе.

– М: «Просвещение», 1988.

Мир физики: Научно-художественная лит-ра / Оформление Б.

лит-ра., 1987 – 271с., ил.

Решение задач о молниях.

Первое сентября № 1 2006.

О природе шаровой молнии.

Иванникова и др.

Электив 9: Физика.

Биология: конструктор элективных курсов (межпредметных и предметно-ориентированных).

Защита от атмосферного электричества

Атмосферное электричество проявляется в виде молний, элетростатической и электромагнитной индукции от грозового разряда. Все эти проявления опасны для жизни людей. Молнияпредставляет собой разряд между разноименно заряженными облаками или между ними и землей, происходящий за тысячные доли секунды и сопровождается громом, вследствие быстрого расширения нагретого воздуха, и протеканием тока в десятки километров и величиной 200 кА и более. В канале молнии температура может достигать несколько десятков тысяч градусов.

Возможны поражения людей, как прямым попаданием молнии, так и вторичным проявлением грозового разряда, из-за удара молнии в возвышенные предметы (дерево, здание и т.д.). Возникающее большое шаговое напряжение на поверхности земли действует в радиусе 10 ¸ 15 м от места удара.

ОПРЕДЕЛЕНИЕ. Молниезащита представляет собой комплекс мероприятий, направлен­ных на предотвращение прямого удара молнии в здание (сооружения) или на устране­ние опасных последствий, связанных с прямым ударом.

Эффективным средством защиты от прямых ударов молнии служит молниеотвод — устройство, рассчитанное на непосредственный контакт с каналом мол­нии и отводящее её ток в землю. Различают два типа зон защиты – А и Б. Зона защиты типа А обладает вероятностью защиты 99,5%, а типа Б — 95%.

Зона защиты молниеотвода пространство, внутри которого зда­ние или сооружение защищено от прямых ударов молнии с надежностью не ниже определенного значения.

В общем случае молниеотвод состоит из опоры; молниеприемника, непосредственно воспринимающего удар молнии; токоотвода, по кото­рому ток молнии передается в землю; заземлителя, обеспечивающего растекание тока молнии в земле.

В некоторых случаях функции опоры, молниеприемника и токоотво­да совмещаются, например, при использовании в качестве молниеотвода металлических труб или ферм.

Широкое распространение получили стержневые молниеотводы.

Молниеотводы разделяются на отдельно стоящие, обеспечивающие растекание тока молнии, минуя объект, и установленные на самом объек­те. При этом растекание тока происходит по контролируемым путям так, что обеспечивается низкая вероятность поражения людей (живот­ных), взрыва или пожара.

При установке молниеотводов на защищаемом объекте и невозможности использования в качестве токоотводов металлических конструкций здания токоотводы должны быть проложены к заземлителям по наружным стенам здания кратчайшими путями.

В качестве заземлителей молниезащиты допускается использовать все рекомендуемые заземлители электроустановок, за исключением нулевых проводов воздушных линий электропередачи напряжением до 1 кВ.

Ниже приводятся основные формулы для расчета зон защиты стержневых молниеотводов при их высоте, не превышающей 60 м.

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис.18.2), вершина которого находится на высоте ho

Зона защиты одиночного стержневого молниеотвода высотой h представляет собой круговой конус (рис.18.2), вершина которого находится на высоте ho

Ссылка на основную публикацию
Adblock
detector